Facebook Pixel
Brookbush Institute Logo
Effects of Joint Mobilizations and Manipulations

Effects of Joint Mobilizations and Manipulations

The effects of joint mobilizations and manipulations on kinematics and muscular changes. Identifying the use of joint mobs and manips on the cervical, thoracic, and lumbar spine, and the effects on range of motion, pain, nervous system response, and motion at the neck, shoulder, hip, knee, ankle. Research showing these effects are not placebo.

Test Critical Content

Mark As Complete

Course Description: Effects of Joint Mobilizations and Manipulations

Physical rehabilitation professionals, including physical therapists, osteopaths, and chiropractors, have been refining joint mobilizations and joint manipulations for 100s of years. There are even depictions of joint mobilization treatment that are 1000s of years old. Joint mobilization strategies have been published for chronic pain of the low back, hand pain, extremity joint issues, and various sports injuries. Some practitioners have noted the effect of joint mobilizations and joint manipulations on muscle activity and have integrated these techniques into routines for muscle weakness, muscle strains, and recurring pain relief for active trigger points.

The neurophysiological and mechanical effects of mobilizations and manipulations are actually quite complex. However, the simplest and most effective recommendation for their use is the intent to reduce joint stiffness for specific joints that have been assessed as exhibiting a reduction in joint play (arthrokinematic motion). Despite outcome studies demonstrating the efficacy of this approach to using these techniques, it would be presumptive to imply that there is a single, or a simple reason, that these techniques are effective. Some studies even imply mechanisms that are similar to deep tissue massage, massage guns, and other muscle tissue and connective tissue techniques, that are related to nerve endings involved in neuromuscular reflexes like autogenic inhibition (relaxation response), and altered cortisol concentrations (stress hormone), and central nervous system mediated pain relief which may be particularly effective for the treatment of chronic pain.

We hope this course helps to build a foundation of knowledge regarding the effects of joint intended technique from a very large body of research and rich clinical history. Further, this course is pre-approved for credits toward the Integrated Manual Therapist (IMT) Certification, and pre-approved for continuing education credits for sports medicine professionals and health care providers (physical therapists, athletic trainers, massage therapists, chiropractors, occupational therapists, etc.).

Pre-approved credits for:

Pre-approved for Continuing Education Credits for:

This Course Includes:

  • AI Tutor
  • Webinar
  • Study Guide
  • Text and Illustrations
  • Audio Voice-over
  • Research Review
  • Practice Exam
  • Pre-approved Final Exam

Brookbush Institute's Position Statement

Mobilizations and manipulations result in kinematic, neurophysiological, and muscular changes that have been correlated with the improvement of various subjective and objective patient outcomes, both short-term and long-term. Further, these changes have been demonstrated in randomized placebo/nocebo-controlled trials, implying the effects are not attributable to placebo or patient perceptions/expectations.

What this Course Covers

  • Myth Busting
    • The Effects Are Not Placebo
  • Kinematics
    • Joint Motion During Mobilization and Manipulation
    • Factors affecting force during mobilization and manipulations.
    • Factors Affecting Joint Stiffness
    • Effect on Structures
  • Nervous System
    • H-reflex, M-wave, and V-wave Response
    • Central Nervous System (CNS) Mediated Changes
    • Sympatho-excitatory Effects
    • Analgesia
  • Muscle Activity
    • Spine
    • Extremities
    • Additional Considerations

Course Study Guide: Effects of Joint Mobilizations and Manipulations

Course Webinar: Effects of Joint Mobilizations and Manipulations

Introduction

Research Summary

Myth Busting: The Effects are Not Placebo

Kinematics: Joint Motion During Mobilizations and Manipulations
5 Sub Sections

Kinematics: Factors Affecting Joint Stiffness
2 Sub Sections

Kinematics: Factors Affecting Force During Mobilizations and Manipulations
2 Sub Sections

Nervous System
4 Sub Sections

Muscle Activity
3 Sub Sections

Bibliography

Bibliography

Cervical Spine Kinematics

  1. Anderst, W. J., Gale, T., LeVasseur, C., Raj, S., Gongaware, K., & Schneider, M. (2018). Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation. The Spine Journal18(12), 2333-2342.
  2. Dugailly, P. M., Sobczak, S., Sholukha, V., Jan, S. V. S., Salvia, P., Feipel, V., & Rooze, M. (2010). In vitro 3D-kinematics of the upper cervical spine: helical axis and simulation for axial rotation and flexion extension. Surgical and radiologic anatomy, 32(2), 141-151.
  3. Dugailly, P. M., Sobczak, S., Moiseev, F., Sholukha, V., Salvia, P., Feipel, V., ... & Jan, S. V. S. (2011). Musculoskeletal modeling of the suboccipital spine: kinematics analysis, muscle lengths, and muscle moment arms during axial rotation and flexion extension. Spine36(6), E413-E422.
  4. Dugailly, P. M., Bonnechère, B., Maroye, L., Van Geyt, B., Salvia, P., & Feipel, V. (2013). Kinematics analysis and helical axis computation during high velocity-low amplitude cervical spine manipulation: a preliminary study. Rev l'Ostéopath3(2), 6.
  5. Dugailly, P. M., Beyer, B., Sobczak, S., Salvia, P., & Feipel, V. (2014). Global and regional kinematics of the cervical spine during upper cervical spine manipulation: a reliability analysis of 3D motion data. Manual therapy19(5), 472-477.
  6. Williams, J. M., & Cuesta-Vargas, A. I. (2013). An investigation into the kinematics of 2 cervical manipulation techniques. Journal of manipulative and physiological therapeutics, 36(1), 20-26.
    • Manipulation results in less ROM than Active ROM
  7. Van Geyt, B., Dugailly, P. M., Klein, P., Lepers, Y., Beyer, B., & Feipel, V. (2017). Assessment of in vivo 3D kinematics of cervical spine manipulation: Influence of practitioner experience and occurrence of cavitation noise. Musculoskeletal Science and Practice28, 18-24.
  8. Liguo, Z., Minshan, F., Xunlu, Y., Shangquan, W., & Jie, Y. (2017). Kinematics Analysis of Cervical Rotation-Traction Manipulation Measured by a Motion Capture System. Evidence-Based Complementary and Alternative Medicine2017.
  9. Klein, P., Broers, C., Feipel, V., Salvia, P., Van Geyt, B., Dugailly, P. M., & Rooze, M. (2003). Global 3D head–trunk kinematics during cervical spine manipulation at different levels. Clinical Biomechanics, 18(9), 827-831.
  10. Salem, W., & Klein, P. (2013). In vivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/C5 level. Manual therapy18(4), 321-326.
    • Cervical Mobilization
  11. Lee, R. Y., McGregor, A. H., Bull, A. M., & Wragg, P. (2005). Dynamic response of the cervical spine to posteroanterior mobilisation. Clinical Biomechanics, 20(2), 228-231.
  12. McGregor, A. H., Bull, A. M. J., Lee, R., & Wragg, P. (2004). Dynamic response of the human spine to anteroposterior mobilisation manual therapy: an interventional magnetic resonance imaging study. Physiotherapy, 90(3), 165-166.
  13. McGregor, A. H., Wragg, P., & Gedroyc, W. M. W. (2001). Can interventional MRI provide an insight into the mechanics of a posterior–anterior mobilisation?. Clinical Biomechanics16(10), 926-929.
    • Lumbar
  14. Howarth, S. J., D’Angelo, K., & Triano, J. J. (2016). Development of a linked segment model to derive patient low back reaction forces and moments during high-velocity low-amplitude spinal manipulation. Journal of manipulative and physiological therapeutics, 39(3), 176-184.
  15. Lee, Raymond, and John Evans. "Load-displacement-time characteristics of the spine under posteroanterior mobilisation." Australian Journal of Physiotherapy 38.2 (1992): 115-123.
  16. Kulig, K., Landel, R. F., & Powers, C. M. (2004). Assessment of lumbar spine kinematics using dynamic MRI: a proposed mechanism of sagittal plane motion induced by manual posterior-to-anterior mobilization. Journal of Orthopaedic & Sports Physical Therapy, 34(2), 57-64.
  17. Tsung, B. Y., Evans, J., Tong, P., & Lee, R. Y. (2005). Measurement of Lumbar Spine Loads and Motions During Rotational Mobilization. Journal of Manipulative & Physiological Therapeutics28(4), 238-244.
  18. Lee, R., & Evans, J. (1997). An in vivo study of the intervertebral movements produced by posteroanterior mobilization. Clinical Biomechanics12(6), 400-408.
  19. Keller, T. S., Colloca, C. J., & Béliveau, J. G. (2002). Force-deformation response of the lumbar spine: a sagittal plane model of posteroanterior manipulation and mobilization. Clinical biomechanics17(3), 185-196.
    • Spine Manipulation Kinematics and Outcomes
  20. Feng, Y., Gao, Y., Yang, W., & Feng, T. (2013). Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation. Neural regeneration research8(12), 1139.
    • Shoulder
  21. Ho, K. Y., & Hsu, A. T. (2009). Displacement of the head of humerus while performing “mobilization with movements” in glenohumeral joint: A cadaver study. Manual therapy14(2), 160-166.
  22. Henderson, N., Worst, H., Decarreau, R., & Davies, G. (2016). Ultrasound measurements and objective forces of glenohumeral translations during shoulder accessory passive motion testing in healthy individuals. International journal of sports physical therapy11(5), 746.
  23. Talbott and, N. R., & Witt, D. W. (2016). In vivo measurements of humeral movement during posterior glenohumeral mobilizations. Journal of Manual & Manipulative Therapy24(5), 269-276.
    • Movement of Adjacent Segments
  24. Engell, S., Triano, J. J., & Howarth, S. J. (2019). Force transmission between thoracic and cervical segments of the spine during prone-lying high-velocity low-amplitude spinal manipulation: a proof of principle for the concept of regional interdependence. Clinical Biomechanics, 69, 58-63.
  25. Gál, J., Herzog, W., Kawchuk, G., Conway, P., & Zhang, Y. T. (1994). Biomechanical studies of spinal manipulative therapy (SMT): quantifying the movements of vertebral bodies during SMT. The Journal of the Canadian Chiropractic Association, 38(1), 11.
  26. Gal, J., Herzog, W., Kawchuk, G., Conway, P. J., & Zhang, Y. T. (1997). Movements of vertebrae during manipulative thrusts to unembalmed human cadavers. Journal of manipulative and physiological therapeutics, 20(1), 30-40.
  27. Lee, M., & Svensson, N. L. (1993). Effect of loading frequency on response of the spine to lumbar posteroanterior forces. Journal of manipulative and physiological therapeutics, 16(7), 439-446.
  28. Lee, M., & Liversidge, K. (1994). Posteroanterior stiffness at three locations in the lumbar spine. Journal of Manipulative and Physiological Therapeutics, 17(8), 511-516.
    • Effect on Structures
  29. Maigne, J. Y., & Guillon, F. (2000). Highlighting of intervertebral movements and variations of intradiskal pressure during lumbar spine manipulation: a feasibility study. Journal of manipulative and physiological therapeutics23(8), 531-535.
  30. Tian, Q., Fan, Z., Zhao, J., Guo, R., Li, Z., & Wu, S. (2018, December). Biomechanical Mechanism of Lumbar Spine with Chinese Spinal Manipulation: A Finite Element Study. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1892-1897). IEEE.
  31. WANG, G. L., ZHANG, M. C., LI, Y. K., Xu, H. T., & Qiu, G. C. (2008). Comparison of lumbar rotation manipulation in three lumbar flexion levels. The Journal of Cervicodynia and Lumbodynia1.
  32. Xu, H. T., Zhang, M. C., Li, Y. K., Wang, G. L., & Qiu, G. C. (2005). Real-time measure of displacement and intra-stress of normal lumbar disc during simulating rotatory manipulation in sitting position. Chin J Rehabil Med, 20, 563-565.
  33. Xu, H. T., Xu, D. C., Li, Y. G., Zhang, M. C., Li, Y. K., & Wang, G. L. (2007). Analyses of intra-stress and displacement of degenerate lumbar disc during simulating rotatory manipulation by finite element. Chin J Rehabil Med, 22, 769-771.
  34. Chen, J. F., Shu, X. N., Tang, S. J., Wu, Y., & Zhang, Y. P. (2016). Influence of lumbar disc degeneration on the efficacy of lumbar fixed-point rotation manipulation in sitting position: a finite element study. Journal of Acupuncture and Tuina Science, 14(4), 295-299.
  35. Li, L., Shen, T., & Li, Y. K. (2017). A Finite Element Analysis of Stress Distribution and Disk Displacement in Response to Lumbar Rotation Manipulation in the Sitting and Side-Lying Positions. Journal of manipulative and physiological therapeutics40(8), 580-586.
  36. Xu, H. T., Li, S., Liu, L., Lai, Q. L., Luo, X. W., Xu, D. C., & Li, Y. K. (2011). Symbol Finite element analysis of the intervertebral disc during lumbar obligue-pulling manipulation. Journal of Clinical Rehabilitative Tissue Engineering Research15(13), 2335-2338.
  37. Wang, F., Zhang, J., Feng, W., Liu, Q., Yang, X., Zhang, H., ... & Zhao, P. (2018). Comparison of human lumbar disc pressure characteristics during simulated spinal manipulation vs. spinal mobilization. Molecular medicine reports, 18(6), 5709-5716.
    • Amount of Force Necessary for Failure of Tissue
  38. Sran, M. M., Khan, K. M., Zhu, Q., McKay, H. A., & Oxland, T. R. (2004). Failure characteristics of the thoracic spine with a posteroanterior load: investigating the safety of spinal mobilization. Spine29(21), 2382-2388.
  39. Stemper, B. D., Hallman, J. J., & Peterson, B. M. (2011). An experimental study of chest compression during chiropractic manipulation of the thoracic spine using an anthropomorphic test device. Journal of manipulative and physiological therapeutics34(5), 290-296.
  40. Boonyoung, C., Kwanyuang, A., & Chatpun, S. (2018, November). A finite element study of posteroanterior lumbar mobilization on elderly vertebra geometry. In 2018 11th Biomedical Engineering International Conference (BMEiCON) (pp. 1-4). IEEE.
    • Toe and Creep
  41. Nicholson, L., Maher, C., Adams, R., & Phan-Thien, N. (2001). Stiffness properties of the human lumbar spine: a lumped parameter model. Clinical Biomechanics, 16(4), 285-292.
  42. Nicholson, L. L., Maher, C. G., & Adams, R. (1998). Hand contact area, force applied and early non-linear stiffness (toe) in a manual stiffness discrimination task. Manual Therapy, 3(4), 212-219.
  43. Shirley, D., Ellis, E., & Lee, M. (2002). The response of posteroanterior lumbar stiffness to repeated loading. Manual Therapy, 7(1), 19-25.
  44. Latimer, J., Lee, M., & Adams, R. D. (1998). The effects of high and low loading forces on measured values of lumbar stiffness. Journal of manipulative and physiological therapeutics, 21(3), 157-163.
    • Direction of Force during mobilization
  45. Snodgrass, S. J., Rivett, D. A., Robertson, V. J., & Stojanovski, E. (2009). Forces applied to the cervical spine during posteroanterior mobilization. Journal of Manipulative and Physiological Therapeutics, 32(1), 72-83.
  46. Allison, G. T., Edmondston, S. J., Roe, C. P., Reid, S. E., Toy, D. A., & Lundgren, H. E. (1998). Influence of load orientation on the posteroanterior stiffness of the lumbar spine. Journal of manipulative and physiological therapeutics, 21(8), 534-538.
  47. Caling, B., & Lee, M. (2001). Effect of direction of applied mobilization force on the posteroanterior response in the lumbar spine. Journal of Manipulative and Physiological Therapeutics, 24(2), 71-78.
  48. Viner, A., & Lee, M. (1995). Direction of manual force applied during assessment of stiffness in the lumbosacral spine. Journal of manipulative and physiological therapeutics, 18(7), 441-447.
    • Fascia
  49. Bereznick, D. E., Ross, J. K., & McGill, S. M. (2002). The frictional properties at the thoracic skin–fascia interface: implications in spine manipulation. Clinical Biomechanics, 17(4), 297-303.
    • Support from investing structures
  50. Lee, M., Steven, G. P., Crosbie, J., & Higgs, R. J. (1998). Variations in posteroanterior stiffness in the thoracolumbar spine: preliminary observations and proposed mechanisms. Physical therapy, 78(12), 1277-1287.
  51. Cattrysse, E., S. Provyn, P. Kool, J. P. Clarys, and P. Van Roy. "Morphology and kinematics of the atlanto-axial joints and their interaction during manual cervical rotation mobilization." Manual therapy 16, no. 5 (2011): 481-486.
    1. Position of the Spine, Pelvis, and Rib Cage
  52. Edmondston, S. J., Allison, G. T., Gregg, C. D., Purden, S. M., Svansson, G. R., & Watson, A. E. (1998). Effect of position on the posteroanterior stiffness of the lumbar spine. Manual Therapy3(1), 21-26.
  53. Chansirinukor, W., Lee, M., & Latimer, J. (2001). Contribution of pelvic rotation to lumbar posteroanterior movement. Manual therapy, 6(4), 242-249.
  54. Chansirinukor, W., Lee, M., & Latimer, J. (2003). Contribution of ribcage movement to thoracolumbar posteroanterior stiffness. Journal of manipulative and physiological therapeutics26(3), 176-183.
  55. Shirley, D., Hodges, P. W., Eriksson, A. E. M., & Gandevia, S. C. (2003). Spinal stiffness changes throughout the respiratory cycle. Journal of Applied Physiology.
    • Physical Characteristics
  56. Owens Jr, E. F., DeVocht, J. W., Gudavalli, M. R., Wilder, D. G., & Meeker, W. C. (2007). Comparison of posteroanterior spinal stiffness measures to clinical and demographic findings at baseline in patients enrolled in a clinical study of spinal manipulation for low back pain. Journal of manipulative and physiological therapeutics, 30(7), 493-500.
  57. Harms, M. C., Innes, S. M., & Bader, D. L. (1999). Forces measured during spinal manipulative procedures in two age groups. Rheumatology (Oxford, England)38(3), 267-274.
    • Muscle Activity's Effect on Stiffness
  58. Lee, M., Esler, M. A., Mildren, J., & Herbert, R. (1993). Effect of extensor muscle activation on the response to lumbar posteroanterior forces. Clinical Biomechanics, 8(3), 115-119.
    • Hand Position and Grip
  59. Perle, S. M., & Kawchuk, G. N. (2005). Pressures generated during spinal manipulation and their association with hand anatomy. Journal of manipulative and physiological therapeutics28(4), 265-e1.
  60. Maher, C., & Adams, R. (1996). A comparison of pisiform and thumb grips in stiffness assessment. Physical therapy, 76(1), 41-48.
  61. Nicholson, L. L., Maher, C. G., & Adams, R. (1998). Hand contact area, force applied and early non-linear stiffness (toe) in a manual stiffness discrimination task. Manual Therapy, 3(4), 212-219.
  62. Snodgrass, S. J., Rivett, D. A., & Robertson, V. J. (2007). Manual forces applied during cervical mobilization. Journal of manipulative and physiological therapeutics30(1), 17-25.
  63. Snodgrass, S. J., Rivett, D. A., Robertson, V. J., & Stojanovski, E. (2009). Forces applied to the cervical spine during posteroanterior mobilization. Journal of Manipulative and Physiological Therapeutics32(1), 72-83.
  64. Snodgrass, S. J., Rivett, D. A., Robertson, V. J., & Stojanovski, E. (2010). Cervical spine mobilisation forces applied by physiotherapy students. Physiotherapy, 96(2), 120-129.
    • Gender
  65. Forand, D., Drover, J., Suleman, Z., Symons, B., & Herzog, W. (2004). The forces applied by female and male chiropractors during thoracic spinal manipulation. Journal of manipulative and physiological therapeutics, 27(1), 49-56.
  66. Pasquier, M., Barbier-Cazorla, F., Audo, Y., Descarreaux, M., & Lardon, A. (2019). Learning spinal manipulation: Gender and expertise differences in biomechanical parameters, accuracy, and variability. Journal of Chiropractic Education, 33(1), 1-7.
  67. Snodgrass, S. J., Rivett, D. A., Robertson, V. J., & Stojanovski, E. (2010). A comparison of cervical spine mobilization forces applied by experienced and novice physiotherapists. journal of orthopaedic & sports physical therapy, 40(7), 392-401.
    • Experience
  68. Gagnon, D. H., Longtin, C., Berbiche, D., & Gaudreault, N. (2016). Do experienced physiotherapists and final year physiotherapy trainees apply similar force during posterior-to-anterior lumbar mobilization techniques?. Manual therapy21, 287-291.
  69. Derian, J. M., Smith, J. A., Wang, Y., Lam, W., & Kulig, K. (2020). Biomechanical characteristics of lumbar manipulation performed by expert, resident, and student physical therapists. Musculoskeletal Science and Practice, 102150.
  70. Loranger, M., Treboz, J., Boucher, J. A., Nougarou, F., Dugas, C., & Descarreaux, M. (2016). Correlation of expertise with error detection skills of force application during spinal manipulation learning. Journal of Chiropractic Education30(1), 1-6.
    • Practitioners Can Alter Force
  71. Triano, J., & Schultz, A. B. (1997). Loads transmitted during lumbosacral spinal manipulative therapy. Spine22(17), 1955-1964.
  72. Owens Jr, E. F., Hosek, R. S., Mullin, L., Dever, L., Sullivan, S. G., & Russell, B. S. (2017). Thrust magnitudes, rates, and 3-dimensional directions delivered in simulated lumbar spine high-velocity, low-amplitude manipulation. Journal of manipulative and physiological therapeutics40(6), 411-419.
    • Comparing Techniques
  73. Triano, J. J., & Schultz, A. B. (1994). Motions of the head and thorax during neck manipulations. Journal of manipulative and physiological therapeutics, 17(9), 573-583.
  74. Kawchuk, G. N., Prasad, N. G., McLeod, R. C., Liddle, T., Li, T., & Zhu, Q. (2006). Variability of force magnitude and force duration in manual and instrument-based manipulation techniques. Journal of manipulative and physiological therapeutics, 29(8), 611-618.
  75. Kawchuk, G. N., & Herzog, W. (1993). Biomechanical characterization (fingerprinting) of five novel methods of cervical spine manipulation. Journal of manipulative and physiological therapeutics, 16(9), 573-577.
  76. Cambridge, E. D., Triano, J. J., Ross, J. K., & Abbott, M. S. (2012). Comparison of force development strategies of spinal manipulation used for thoracic pain. Manual therapy17(3), 241-245.
  77. Bell, S., D’Angelo, K., Kawchuk, G. N., Triano, J. J., & Howarth, S. J. (2017). Procedure Selection and Patient Positioning Influence Spine Kinematics During High-Velocity, Low-Amplitude Spinal Manipulation Applied to the Low Back. Journal of manipulative and physiological therapeutics40(3), 147-155
    • Manual Fixation
  78. Cattrysse, E., Baeyens, J. P., Clarys, J. P., & Van Roy, P. (2007). Manual fixation versus locking during upper cervical segmental mobilization.: Part 1: An in vitro three-dimensional arthrokinematic analysis of manual flexion–extension mobilization of the atlanto-occipital joint. Manual therapy12(4), 342-352.
  79. Cattrysse, E., Baeyens, J. P., Clarys, J. P., & Van Roy, P. (2007). Manual fixation versus locking during upper cervical segmental mobilization.: Part 2: An in vitro three-dimensional arthrokinematic analysis of manual axial rotation and lateral bending mobilization of the atlanto-axial joint. Manual therapy12(4), 353-362.
  80. Cattrysse, E., Provyn, S., Kool, P., Gagey, O., Clarys, J. P., & Van Roy, P. (2009). Reproducibility of kinematic motion coupling parameters during manual upper cervical axial rotation mobilization: a 3-dimensional in vitro study of the atlanto-axial joint. Journal of electromyography and kinesiology19(1), 93-104.
    • Additional Variables Affecting Force During Practice and Research
  81. Herzog, W., Conway, P. J., Kawchuk, G. N., Zhang, Y., & Hasler, E. M. (1993). Forces exerted during spinal manipulative therapy. Spine, 18(9), 1206-1212.
  82. Maher, C. G., & Adams, R. D. (1996). Stiffness judgments are affected by visual occlusion. Journal of Manipulative and Physiological Therapeutics, 19(4), 250-256.
  83. Maher, C. G., Latimer, J., & Holland, M. J. (1999). Plinth padding confounds measures of posteroanterior spinal stiffness. Manual therapy, 4(3), 145-150.
  84. Herzog, W., Kats, M., & Symons, B. (2001). The effective forces transmitted by high-speed, low-amplitude thoracic manipulation. Spine26(19), 2105-2110.
  85. Symons, B., Wuest, S., Leonard, T., & Herzog, W. (2012). Biomechanical characterization of cervical spinal manipulation in living subjects and cadavers. Journal of Electromyography and Kinesiology, 22(5), 747-751.
    • Local analgesic effects
  86. Karvat, J., Antunes, J. S., & Bertolini, G. R. F. (2014). Posteroanterior lumbar spine mobilizations in healthy female volunteers. Evaluation of pain to cold and pressure: crossover clinical trial. Revista Dor15(1), 21-24.
  87. Terrett AC, Vernon H. Manipulation and pain tolerance. A controlled study of the effect of spinal manipulation on paraspinal cutaneous pain tolerance levels. Am J Phys Med. 1984; 63: 217– 225.
  88. Sipko, T., Paluszak, A., & Siudy, A. (2018). Effect of Sacroiliac Joint Mobilization on the Level of Soft Tissue Pain Threshold in Asymptomatic Women. Journal of manipulative and physiological therapeutics41(3), 258-264.
  89. Dorron, S. L., Losco, B. E., Drummond, P. D., & Walker, B. F. (2016). Effect of lumbar spinal manipulation on local and remote pressure pain threshold and pinprick sensitivity in asymptomatic individuals: a randomised trial. Chiropractic & manual therapies24(1), 47.
  90. Fernández-de-las-Peñas, C., Alonso-Blanco, C., Cleland, J. A., Rodríguez-Blanco, C., & Alburquerque-Sendín, F. (2008). Changes in pressure pain thresholds over C5-C6 zygapophyseal joint after a cervicothoracic junction manipulation in healthy subjects. Journal of manipulative and physiological therapeutics31(5), 332-337.
  91. Bishop, M. D., Beneciuk, J. M., & George, S. Z. (2011). Immediate reduction in temporal sensory summation after thoracic spinal manipulation. The Spine Journal11(5), 440-446.
  92. Martínez-Segura, R., De-la-Llave-Rincón, A. I., Ortega-Santiago, R., Cleland, J. A., & Fernandez-De-Las-Penas, C. (2012). Immediate changes in widespread pressure pain sensitivity, neck pain, and cervical range of motion after cervical or thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain: a randomized clinical trial. journal of orthopaedic & sports physical therapy42(9), 806-814.
  93. Vicenzino, B., Paungmali, A., Buratowski, S., & Wright, A. (2001). Specific manipulative therapy treatment for chronic lateral epicondylalgia produces uniquely characteristic hypoalgesia. Manual therapy6(4), 205-212.
  94. Paungmali, A., O'Leary, S., Souvlis, T., & Vicenzino, B. (2003). Hypoalgesic and sympathoexcitatory effects of mobilization with movement for lateral epicondylalgia. Physical therapy83(4), 374-383.
  95. Courtney, C. A., Steffen, A. D., Fernández-De-Las-Peñas, C., Kim, J., & Chmell, S. J. (2016). Joint mobilization enhances mechanisms of conditioned pain modulation in individuals with osteoarthritis of the knee. journal of orthopaedic & sports physical therapy46(3), 168-176.
  96. Slater, H., Arendt-Nielsen, L., Wright, A., & Graven-Nielsen, T. (2006). Effects of a manual therapy technique in experimental lateral epicondylalgia. Manual therapy, 11(2), 107-117.
    • Distal Analgesic Effects
  97. Sillevis, R., Cleland, J., Hellman, M., & Beekhuizen, K. (2010). Immediate effects of a thoracic spine thrust manipulation on the autonomic nervous system: a randomized clinical trial. Journal of Manual & Manipulative Therapy, 18(4), 181-190.
  98. George, S. Z., Bishop, M. D., Bialosky, J. E., Zeppieri, G., & Robinson, M. E. (2006). Immediate effects of spinal manipulation on thermal pain sensitivity: an experimental study. BMC Musculoskeletal disorders7(1), 68.
  99. Bialosky, J. E., Bishop, M. D., Robinson, M. E., Barabas, J. A., & George, S. Z. (2008). The influence of expectation on spinal manipulation induced hypoalgesia: an experimental study in normal subjects. BMC Musculoskeletal Disorders9(1), 19.
  100. Yang J, Lee B, Kim C. Changes in proprioception and pain in patients with neck pain after upper thoracic manipulation. J Phys Ther Sci. 2015;27(3):795-8.
  101. Fernández-De-Las-Peñas, C., Pérez-De-Heredia, M., Brea-Rivero, M., & Miangolarra-Page, J. C. (2007). Immediate effects on pressure pain threshold following a single cervical spine manipulation in healthy subjects. Journal of Orthopaedic & Sports Physical Therapy37(6), 325-329.
  102. Fernández-Carnero, J., Fernández-de-las-Peñas, C., & Cleland, J. A. (2008). Immediate hypoalgesic and motor effects after a single cervical spine manipulation in subjects with lateral epicondylalgia. Journal of manipulative and physiological therapeutics31(9), 675-681.
  103. Fernández-Carnero, J., Cleland, J. A., & Arbizu, R. L. T. (2011). Examination of motor and hypoalgesic effects of cervical vs thoracic spine manipulation in patients with lateral epicondylalgia: a clinical trial. Journal of manipulative and physiological therapeutics34(7), 432-440.
  104. Vicenzino, B., Collins, D., Benson, H., & Wright, A. (1998). An investigation of the interrelationship between manipulative therapy-induced hypoalgesia and sympathoexcitation. Journal of manipulative and physiological therapeutics21(7), 448-453.
  105. Vicenzino, B., Collins, D., & Wright, A. (1996). The initial effects of a cervical spine manipulative physiotherapy treatment on the pain and dysfunction of lateral epicondylalgia. Pain68(1), 69-74.
  106. Abbott, J. H. (2001). Mobilization with movement applied to the elbow affects shoulder range of movement in subjects with lateral epicondylalgia. Manual Therapy6(3), 170-177.
    • Trigger Point Sensitivity
  107. Ruiz-Sáez, M., Fernández-de-las-Peñas, C., Blanco, C. R., Martínez-Segura, R., & García-León, R. (2007). Changes in pressure pain sensitivity in latent myofascial trigger points in the upper trapezius muscle after a cervical spine manipulation in pain-free subjects. Journal of manipulative and physiological therapeutics30(8), 578-583.
  108. Srbely, J. Z., Vernon, H., Lee, D., & Polgar, M. (2013). Immediate effects of spinal manipulative therapy on regional antinociceptive effects in myofascial tissues in healthy young adults. Journal of manipulative and physiological therapeutics36(6), 333-341.
  109. Coronado, R. A., Bialosky, J. E., Bishop, M. D., Riley 3rd, J. L., Robinson, M. E., Michener, L. A., & George, S. Z. (2015). The comparative effects of spinal and peripheral thrust manipulation and exercise on pain sensitivity and the relation to clinical outcome: a mechanistic trial using a shoulder pain model. journal of orthopaedic & sports physical therapy45(4), 252-264.
    • A-Fibers versus C-Fibers
  110. Bialosky, J. E., Bishop, M. D., Robinson, M. E., Zeppieri Jr, G., & George, S. Z. (2009). Spinal manipulative therapy has an immediate effect on thermal pain sensitivity in people with low back pain: a randomized controlled trial. Physical therapy89(12), 1292-1303.
    • Inconsistencies
  111. Penza, C. W., Horn, M. E., George, S. Z., & Bishop, M. D. (2017). Comparison of 2 lumbar manual therapies on temporal summation of pain in healthy volunteers. The Journal of Pain18(11), 1397-1408.
  112. Thomson, O., Haig, L., & Mansfield, H. (2009). The effects of high-velocity low-amplitude thrust manipulation and mobilisation techniques on pressure pain threshold in the lumbar spine. International Journal of Osteopathic Medicine12(2), 56-62.
  113. Aspinall, S. L., Jacques, A., Leboeuf-Yde, C., Etherington, S. J., & Walker, B. F. (2019). No difference in pressure pain threshold and temporal summation after lumbar spinal manipulation compared to sham: A randomised controlled trial in adults with low back pain. Musculoskeletal Science and Practice.
  114. Orakifar, N., Kamali, F., Pirouzi, S., & Jamshidi, F. (2012). Sacroiliac joint manipulation attenuates alpha-motoneuron activity in healthy women: a quasi-experimental study. Archives of physical medicine and rehabilitation93(1), 56-61.
  115. Jordon, M. K., Beattie, P. F., D’Urso, S., & Scriven, S. (2017). Spinal manipulation does not affect pressure pain thresholds in the absence of neuromodulators: a randomized controlled trial. Journal of Manual & Manipulative Therapy, 25(4), 172-181.
  116. O’Neill, S., Ødegaard-Olsen, Ø., & Søvde, B. (2015). The effect of spinal manipulation on deep experimental muscle pain in healthy volunteers. Chiropractic & manual therapies, 23(1), 25.
    • H-reflex Attenuation
  117. Dishman, J. D., & Bulbulian, R. (2000). Spinal reflex attenuation associated with spinal manipulation. Spine25(19), 2519-2525.
  118. Dishman, J. D., Burke, J. R., & Dougherty, P. (2018). Motor Neuron Excitability Attenuation as a Sequel to Lumbosacral Manipulation in Subacute Low Back Pain Patients and Asymptomatic Adults: A Cross-Sectional H-Reflex Study. Journal of manipulative and physiological therapeutics41(5), 363-371.
  119. Suter, E., McMorland, G., & Herzog, W. (2005). Short-term effects of spinal manipulation on H-reflex amplitude in healthy and symptomatic subjects. Journal of manipulative and physiological therapeutics28(9), 667-672.
  120. Murphy, B. A., Dawson, N. J., & Slack, J. R. (1995). Sacroiliac joint manipulation decreases the H-reflex. Electromyography and clinical neurophysiology35(2), 87.
  121. Dishman, J. D., Cunningham, B. M., & Burke, J. (2002). Comparison of tibial nerve H-reflex excitability after cervical and lumbar spine manipulation. Journal of manipulative and physiological therapeutics25(5), 318-325.
  122. Dishman, J. D., & Burke, J. (2003). Spinal reflex excitability changes after cervical and lumbar spinal manipulation: a comparative study. The spine journal3(3), 204-212.
  123. Dishman, J. D., Dougherty, P. E., & Burke, J. R. (2005). Evaluation of the effect of postural perturbation on motoneuronal activity following various methods of lumbar spinal manipulation. The Spine Journal5(6), 650-659.
  124. Floman, Y., Liram, N., & Gilai, A. N. (1997). Spinal manipulation results in immediate H-reflex changes in patients with unilateral disc herniation. European Spine Journal6(6), 398-401.
  125. Bulbulian, R., Burke, J., & Dishman, J. D. (2002). Spinal reflex excitability changes after lumbar spine passive flexion mobilization. Journal of Manipulative & Physiological Therapeutics25(8), 526-532.
    • V-wave and M-wave
  126. Grindstaff, T. L., Beazell, J. R., Sauer, L. D., Magrum, E. M., Ingersoll, C. D., & Hertel, J. (2011). Immediate effects of a tibiofibular joint manipulation on lower extremity H-reflex measurements in individuals with chronic ankle instability. Journal of Electromyography and Kinesiology, 21(4), 652-658.
  127. Azadvari, M., Razavi, S. Z. E., Rezaiee-Moghaddam, F., Reza-Soltani, Z., Azizi, S., & Rakhshan, A. (2018). H-Reflex Attenuation after Lumbosacral Manipulation in Patients With Low Back Pain. Acta Medica Iranica56(10), 671-671.
  128. Niazi, I. K., Türker, K. S., Flavel, S., Kinget, M., Duehr, J., & Haavik, H. (2015). Changes in H-reflex and V-waves following spinal manipulation. Experimental brain research233(4), 1165-1173.
  129. Christiansen, Thomas Lykke, Imran Khan Niazi, Kelly Holt, Rasmus Wiberg Nedergaard, Jens Duehr, Kathryn Allen, Paul Marshall, Kemal S. Türker, Jan Hartvigsen, and Heidi Haavik. "The effects of a single session of spinal manipulation on strength and cortical drive in athletes." European journal of applied physiology 118, no. 4 (2018): 737-749.
  130. Colloca, C. J., Keller, T. S., & Gunzburg, R. (2004). Biomechanical and neurophysiological responses to spinal manipulation in patients with lumbar radiculopathy. Journal of manipulative and physiological therapeutics27(1), 1-15.
  131. Cao, D. Y., Reed, W. R., Long, C. R., Kawchuk, G. N., & Pickar, J. G. (2013). Effects of thrust amplitude and duration of high-velocity, low-amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement. Journal of manipulative and physiological therapeutics36(2), 68-77.
  132. Sung, P. S., Kang, Y. M., & Pickar, J. G. (2005). Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: a preliminary report. Spine30(1), 115-122.
  133. Pickar, J. G., & Kang, Y. M. (2006). Paraspinal muscle spindle responses to the duration of a spinal manipulation under force control. Journal of manipulative and physiological therapeutics29(1), 22-31.
    • Central Nervous System (CNS) Mediated Changes
  134. Haavik-Taylor, H., & Murphy, B. (2007). Transient modulation of intracortical inhibition following spinal manipulation. Chiropractic Journal of Australia37(3), 106.
  135. Lelic, D., Niazi, I. K., Holt, K., Jochumsen, M., Dremstrup, K., Yielder, P., … & Haavik, H. (2016). Manipulation of dysfunctional spinal joints affects sensorimotor integration in the prefrontal cortex: A brain source localization study. Neural plasticity2016.
  136. Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., & Murphy, B. (2013). Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. Journal of manipulative and physiological therapeutics36(8), 527-537.
  137. Sparks, C., Cleland, J. A., Elliott, J. M., Zagardo, M., & Liu, W. C. (2013). Using functional magnetic resonance imaging to determine if cerebral hemodynamic responses to pain change following thoracic spine thrust manipulation in healthy individuals. journal of orthopaedic & sports physical therapy43(5), 340-348.
  138. Haavik, H., Niazi, I., Jochumsen, M., Sherwin, D., Flavel, S., & Türker, K. (2017). Impact of spinal manipulation on cortical drive to upper and lower limb muscles. Brain sciences7(1), 2.
  139. Dishman, J. D., Ball, K. A., & Burke, J. (2002). First prize central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study. Journal of manipulative and physiological therapeutics25(1), 1-9.
  140. Dishman, J. D., Greco, D. S., & Burke, J. R. (2008). Motor-evoked potentials recorded from lumbar erector spinae muscles: a study of corticospinal excitability changes associated with spinal manipulation. Journal of manipulative and physiological therapeutics31(4), 258-270.
  141. Humphries, K. M., Ward, J., Coats, J., Nobert, J., Amonette, W., & Dyess, S. (2013). Immediate effects of lower cervical spine manipulation on handgrip strength and free-throw accuracy of asymptomatic basketball players: a pilot study. Journal of chiropractic medicine12(3), 153-159.
  142. Harkey, M., McLeod, M., Van Scoit, A., Terada, M., Tevald, M., Gribble, P., & Pietrosimone, B. (2014). The immediate effects of an anterior-to-posterior talar mobilization on neural excitability, dorsiflexion range of motion, and dynamic balance in patients with chronic ankle instability. Journal of sport rehabilitation, 23(4), 351-359.
  143. Fisher, B. E., Piraino, A., Lee, Y. Y., Smith, J. A., Johnson, S., Davenport, T. E., & Kulig, K. (2016). The effect of velocity of joint mobilization on corticospinal excitability in individuals with a history of ankle sprain. journal of orthopaedic & sports physical therapy46(7), 562-570.
  144. Fryer, G., & Pearce, A. J. (2012). The effect of lumbosacral manipulation on corticospinal and spinal reflex excitability on asymptomatic participants. Journal of manipulative and Physiological Therapeutics35(2), 86-93.
    • Hormones and Neurotransmitter
  145. Molins-Cubero, S., Rodríguez-Blanco, C., Oliva-Pascual-Vaca, Á., Heredia-Rizo, A. M., Boscá-Gandía, J. J., & Ricard, F. (2014). Changes in pain perception after pelvis manipulation in women with primary dysmenorrhea: a randomized controlled trial. Pain Medicine15(9), 1455-1463.
  146. (236) Sanders, G. E., Reinert, O., Tepe, R., & Maloney, P. (1990). Chiropractic adjustive manipulation on subjects with acute low back pain: visual analog pain scores and plasma beta-endorphin levels. Journal of Manipulative and Physiological Therapeutics, 13(7), 391-395
  147. (105) Puhl, A. A., & Injeyan, H. S. (2012). Short-term effects of manipulation to the upper thoracic spine of asymptomatic subjects on plasma concentrations of epinephrine and norepinephrine—a randomized and controlled observational study. Journal of manipulative and physiological therapeutics35(3), 209-215.
  148. Kokjohn, K., Schmid, D. M., Triano, J. J., & Brennan, P. C. (1992). The effect of spinal manipulation on pain and prostaglandin levels in women with primary dysmenorrhea. Journal of Manipulative and Physiological Therapeutics15(5), 279-285.
  149. Brennan, P. C., Kokjohn, K., Kaltinger, C. J., Lohr, G. E., Glendening, C., Hondras, M. A., … & Triano, J. J. (1991). Enhanced phagocytic cell respiratory burst induced by spinal manipulation: potential role of substance P. Journal of manipulative and physiological therapeutics14(7), 399-408.
  150. Brennan, P. C., Triano, J. J., McGregor, M., Kokjohn, K., Hondras, M. A., & Brennan, D. C. (1992). Enhanced neutrophil respiratory burst as a biological marker for manipulation forces: duration of the effect and association with substance P and tumor necrosis factor. Journal of manipulative and physiological therapeutics15(2), 83-89.
  151. Mackawan, Surussawadi, et al. "Effects of traditional Thai massage versus joint mobilization on substance P and pain perception in patients with non-specific low back pain." Journal of Bodywork and Movement Therapies 11.1 (2007): 9-16.
  152. Sampath, K. K., Botnmark, E., Mani, R., Cotter, J. D., Katare, R., Munasinghe, P. E., & Tumilty, S. (2017). Neuroendocrine response following a thoracic spinal manipulation in healthy men. journal of orthopaedic & sports physical therapy47(9), 617-627
  153. Valera-Calero, A., Gallego-Izquierdo, T., Malfliet, A., & Pecos-Martín, D. (2019). Endocrine response after cervical manipulation and mobilization in people with chronic mechanical neck pain: a randomized controlled trial. European journal of physical and rehabilitation medicine55(6), 792-805.
  154. Didehdar, D., Kamali, F., Yoosefinejad, A. K., & Lotfi, M. (2019). The effect of spinal manipulation on brain neurometabolites in chronic nonspecific low back pain patients: a randomized clinical trial. Irish Journal of Medical Science (1971-), 1-8.
  155. Paungmali, A., O’Leary, S., Souvlis, T., & Vicenzino, B. (2004). Naloxone fails to antagonize initial hypoalgesic effect of a manual therapy treatment for lateral epicondylalgia. Journal of manipulative and physiological therapeutics27(3), 180-185.
  156. Paungmali, A., Vicenzino, B., & Smith, M. (2003). Hypoalgesia induced by elbow manipulation in lateral epicondylalgia does not exhibit tolerance. The Journal of Pain4(8), 448-454.
    • Skin Changes:
  157. La Touche, R., París-Alemany, A., Mannheimer, J. S., Angulo-Díaz-Parreño, S., Bishop, M. D., Lopéz-Valverde-Centeno, A., … & Fernández-Carnero, J. (2013). Does mobilization of the upper cervical spine affect pain sensitivity and autonomic nervous system function in patients with cervico-craniofacial pain?: A randomized-controlled trial. The Clinical journal of pain29(3), 205-215.
  158. Sterling, M., Jull, G., & Wright, A. (2001). Cervical mobilisation: concurrent effects on pain, sympathetic nervous system activity and motor activity. Manual therapy6(2), 72-81.
  159. Moulson, A., & Watson, T. (2006). A preliminary investigation into the relationship between cervical snags and sympathetic nervous system activity in the upper limbs of an asymptomatic population. Manual therapy, 11(3), 214-224.
  160. Jowsey, P., & Perry, J. (2010). Sympathetic nervous system effects in the hands following a grade III postero-anterior rotatory mobilisation technique applied to T4: a randomised, placebo-controlled trial. Manual therapy15(3), 248-253.
  161. Packer, A. C., Dibai-Filho, A. V., Costa, A. C. D. S., Macedo, A. B., Bortolazzo, G. L., & Rodrigues-Bigaton, D. (2015). Immediate effects of upper thoracic manipulation on the skin surface temperature of the vertebral region in healthy women. Fisioterapia e Pesquisa22(1), 54-60.
  162. Tsirakis, V., & Perry, J. (2015). The effects of a modified spinal mobilisation with leg movement (SMWLM) technique on sympathetic outflow to the lower limbs. Manual therapy, 20(1), 103-108.
  163. Moutzouri, M., Perry, J., & Billis, E. (2012). Investigation of the Effects of a Centrally Applied Lumbar Sustained Natural Apophyseal Glide Mobilization on Lower Limb Sympathetic Nervous System Activity in Asymptomatic Subjects. Journal of Manipulative & Physiological Therapeutics, 35(4), 286-294.
  164. Yu, I. Y., Jung, I. G., Kang, M. H., Lee, D. K., & Oh, J. S. (2015). Immediate effects of an end-range mobilization technique on shoulder range of motion and skin temperature in individuals with posterior shoulder tightness. Journal of physical therapy science27(6), 1723-1725.
  165. Simon, R., Vicenzino, B., & Wright, A. (1997). The influence of an anteroposterior accessory glide of the glenohumeral joint on measures of peripheral sympathetic nervous system function in the upper limb. Manual Therapy2(1), 18-23.
    • Skin Changes: Differences
  166. Perry, J., Green, A., Singh, S., & Watson, P. (2015). A randomised, independent groups study investigating the sympathetic nervous system responses to two manual therapy treatments in patients with LBP. Manual therapy20(6), 861-867.
  167. Perry, J., Green, A., Singh, S., & Watson, P. (2011). A preliminary investigation into the magnitude of effect of lumbar extension exercises and a segmental rotatory manipulation on sympathetic nervous system activity. Manual therapy16(2), 190-195.
  168. Jiang, C. B., Wang, J., Zheng, Z. X., Hou, J. S., Ma, L., & Sun, T. (2012). Efficacy of cervical fixed-point traction manipulation for cervical spondylotic radiculopathy: a randomized controlled trial. Zhong xi yi jie he xue bao= Journal of Chinese integrative medicine, 10(1), 54-58.
  169. Chiu, T. W., & Wright, A. (1996). To compare the effects of different rates of application of a cervical mobilisation technique on sympathetic outflow to the upper limb in normal subjects. Manual Therapy1(4), 198-203.
  170. Harris, W., & Wagnon, R. J. (1987). The effects of chiropractic adjustments on distal skin temperature. Journal of manipulative and physiological therapeutics10(2), 57-60.
    • Cardiovascular Changes
  171. Yung, E. Y., Oh, C., Wong, M. S., Grimes, J. K., Barton, E. M., Ali, M. I., & Cameron, D. (2017). The immediate cardiovascular response to joint mobilization of the neck-a randomized, placebo-controlled trial in pain-free adults. Musculoskeletal Science and Practice28, 71-78.
  172. Yung, E., Oh, C., Wong, M., Grimes, J. K., Barton, E. M., Ali, M. I., & Breakey, A. (2019). Non-thrust cervical manipulations reduce short-term pain and decrease systolic blood pressure during intervention in mechanical neck pain: a randomized clinical trial. Journal of Manual & Manipulative Therapy, 1-12.
  173. Vicenzino, B., Cartwright, T., Collins, D., & Wright, A. (1998). Cardiovascular and respiratory changes produced by lateral glide mobilization of the cervical spine. Manual Therapy3(2), 67-71.
  174. McGuiness, J., Vicenzino, B., & Wright, A. (1997). Influence of a cervical mobilization technique on respiratory and cardiovascular function. Manual Therapy2(4), 216-220.
  175. Minarini, G., Ford, M., & Esteves, J. (2018). Immediate effect of T2, T5, T11 thoracic spine manipulation of asymptomatic patient on autonomic nervous system response: Single-blind, parallel-arm controlled-group experiment. International Journal of Osteopathic Medicine30, 12-17.
  176. Budgell, B., & Polus, B. (2006). The effects of thoracic manipulation on heart rate variability: a controlled crossover trial. Journal of manipulative and physiological therapeutics29(8), 603-610.
  177. Ghaffar, T., Sajjad, A., & Rasul, A. (2016). Effects of thoracic spine mobilization on vitals and blood oxygen level in healthy individuals. Journal of Islamic International Medical College11, 163-166.
  178. Ward, J., Coats, J., Tyer, K., Weigand, S., & Williams, G. (2013). Immediate effects of anterior upper thoracic spine manipulation on cardiovascular response. Journal of manipulative and physiological therapeutics36(2), 101-110.
  179. Ward, J., Tyer, K., Coats, J., Williams, G., & Kulcak, K. (2015). Immediate effects of upper thoracic spine manipulation on hypertensive individuals. Journal of Manual & Manipulative Therapy23(1), 43-50.
  180. de Araujo, F. X., Schell, M. S., Ferreira, G. E., Pessoa, M. D. V., de Oliveira, L. R., Borges, B. G., … & Silva, M. F. (2018). Autonomic function and pressure pain threshold following thoracic mobilization in asymptomatic subjects: A randomized controlled trial. Journal of bodywork and movement therapies22(2), 313-320.
  181. Araujo, F. X., Schell, M. S., Ferreira, G. E., Pessoa, M. D., Pinho, A. S., Plentz, R. D., & Silva, M. F. (2019). Short-Term Effects of Different Rates of Thoracic Mobilization on Pressure Pain Thresholds in Asymptomatic Individuals: A Randomized Crossover Trial. Journal of Chiropractic Medicine18(1), 33-41.
  182. da Silva, A. C., de Godoy Marques, C. M., & Marques, J. L. B. (2018). Influence of Spinal Manipulation on Autonomic Modulation and Heart Rate in Patients With Rotator Cuff Tendinopathy. Journal of chiropractic medicine17(2), 82-89.
  183. Welch, A., & Boone, R. (2008). Sympathetic and parasympathetic responses to specific diversified adjustments to chiropractic vertebral subluxations of the cervical and thoracic spine. Journal of chiropractic medicine7(3), 86-93.
  184. Win, N. N., Jorgensen, A. M. S., Chen, Y. S., & Haneline, M. T. (2015). Effects of upper and lower cervical spinal manipulative therapy on blood pressure and heart rate variability in volunteers and patients with neck pain: a randomized controlled, cross-over, preliminary study. Journal of chiropractic medicine14(1), 1-9.
  185. Roy, R. A., Boucher, J. P., & Comtois, A. S. (2009). Heart rate variability modulation after manipulation in pain-free patients vs patients in pain. Journal of manipulative and physiological therapeutics32(4), 277-286.
  186. Alonso-Perez, J. L., Lopez-Lopez, A., La Touche, R., Lerma-Lara, S., Suarez, E., Rojas, J., … & Fernández-Carnero, J. (2017). Hypoalgesic effects of three different manual therapy techniques on cervical spine and psychological interaction: A randomized clinical trial. Journal of bodywork and movement therapies21(4), 798-803.
  187. Vicenzino, B., Cartwright, T., Collins, D., & Wright, A. (1999). An investigation of stress and pain perception during manual therapy in asymptomatic subjects. European Journal of Pain3(1), 13-18.
  188. Plaugher, G., Long, C. R., Alcantara, J., Silveus, A. D., Wood, H., Lotun, K., … & Rowe, S. H. (2002). Practice-based randomized controlled-comparison clinical trial of chiropractic adjustments and brief massage treatment at sites of subluxation in subjects with essential hypertension: pilot study. Journal of manipulative and physiological therapeutics25(4), 221-239.
  189. Goertz, C. M., Salsbury, S. A., Vining, R. D., Long, C. R., Pohlman, K. A., Weeks, W. B., & Lamas, G. A. (2016). Effect of spinal manipulation of upper cervical vertebrae on blood pressure: results of a pilot sham-controlled trial. Journal of manipulative and physiological therapeutics39(5), 369-380.
    • Cervical
  190. Packer, A. C., Pires, P. F., Dibai-Filho, A. V., & Rodrigues-Bigaton, D. (2015). Effect of upper thoracic manipulation on mouth opening and electromyographic activity of masticatory muscles in women with temporomandibular disorder: a randomized clinical trial. Journal of manipulative and physiological therapeutics38(4), 253-261
  191. Pires, P. F., Packer, A. C., Dibai-Filho, A. V., & Rodrigues-Bigaton, D. (2015). Immediate and short-term effects of upper thoracic manipulation on myoelectric activity of sternocleidomastoid muscles in young women with chronic neck pain: A Randomized Blind Clinical Trial. Journal of manipulative and physiological therapeutics38(8), 555-563.
    • Lower Trapezius
  192. Cleland, J., Selleck, B., Stowell, T., Browne, L., Alberini, S., St. Cyr, H., & Caron, T. (2004). Short-term effects of thoracic manipulation on lower trapezius muscle strength. Journal of Manual & Manipulative Therapy12(2), 82-90.
  193. Liebler, E. J., Tufano-Coors, L., Douris, P., Makofsky, H. W., McKenna, R., Michels, C., & Rattray, S. (2001). The effect of thoracic spine mobilization on lower trapezius strength testing. Journal of Manual & Manipulative Therapy9(4), 207-212
    • Extensor Muscles
  194. Mehyar, F., Santos, M., Wilson, S. E., Staggs, V. S., & Sharma, N. K. (2017). Immediate Effect of Lumbar Mobilization on Activity of Erector Spinae and Lumbar Multifidus Muscles. Journal of chiropractic medicine16(4), 271-278.
  195. Pecos-Martín, D., de Melo Aroeira, A. E., Silva, R. V., de Tejada Pozo, G. M., Solano, L. R., Plaza-Manzano, G., … & Falla, D. (2017). Immediate effects of thoracic spinal mobilisation on erector spinae muscle activity and pain in patients with thoracic spine pain: a preliminary randomised controlled trial. Physiotherapy103(1), 90-97.
  196. Chesterton, P., & Payton, S. (2017). Effects of spinal mobilisations on lumbar and hamstring ROM and sEMG: A randomised control trial. Physiotherapy Practice and Research38(1), 17-25.
  197. Chesterton, P., Payton, S., & McLaren, S. (2018). Acute effects of centrally-and unilaterally-applied posterior–Anterior mobilizations of the lumbar spine on lumbar range of motion, hamstring extensibility and muscle activation. Journal of back and musculoskeletal rehabilitation, (Preprint), 1-11.
  198. (DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: a descriptive study. Journal of manipulative and physiological therapeutics28(7), 465-471.
  199. Bicalho, E., Setti, J. A. P., Macagnan, J., Cano, J. L. R., & Manffra, E. F. (2010). Immediate effects of a high-velocity spine manipulation in paraspinal muscles activity of nonspecific chronic low-back pain subjects. Manual therapy15(5), 469-475.
  200. Koppenhaver, S. L., Fritz, J. M., Hebert, J. J., Kawchuk, G. N., Childs, J. D., Parent, E. C., … & Teyhen, D. S. (2011). Association between changes in abdominal and lumbar multifidus muscle thickness and clinical improvement after spinal manipulation. journal of orthopaedic & sports physical therapy41(6), 389-399.
  201. Koppenhaver, S. L., Fritz, J. M., Hebert, J. J., Kawchuk, G. N., Parent, E. C., Gill, N. W., … & Teyhen, D. S. (2012). Association between history and physical examination factors and change in lumbar multifidus muscle thickness after spinal manipulation in patients with low back pain. Journal of Electromyography and Kinesiology22(5), 724-731.
    • Intrinsic Core Muscles
  202. Barbosa, A. W. C., Silva, A. M., Silva, A. F., Martins, F. L. M., & Barbosa, M. C. S. A. (2014). Immediate improvements in activation amplitude levels of the deep abdominal muscle following a sacroiliac joint manipulation during rapid upper limb movement. Journal of bodywork and movement therapies18(4), 626-632.
  203. (101) Puentedura, E. J., Landers, M. R., Hurt, K., Meissner, M., Mills, J., & Young, D. (2011). Immediate effects of lumbar spine manipulation on the resting and contraction thickness of transversus abdominis in asymptomatic individuals. journal of orthopaedic & sports physical therapy41(1), 13-21.
  204. Konitzer, L. N., Gill, N. W., & Koppenhaver, S. L. (2011). Investigation of abdominal muscle thickness changes after spinal manipulation in patients who meet a clinical prediction rule for lumbar stabilization. journal of orthopaedic & sports physical therapy41(9), 666-674.
  205. Ferreira, M. L., Ferreira, P. H., & Hodges, P. W. (2007). Changes in postural activity of the trunk muscles following spinal manipulative therapy. Manual Therapy12(3), 240-248.
    • Hip Flexors
  206. Chi-ngai, L., Thomas, C. T. W., & Chi-Kong, C. (2016). The effect of passive lumbar mobilization on hip flexor strength-a pilot study. Indian Journal of Physiotherapy & Occupational Therapy10(2).
  207. Yuen, T. S., Lam, P. Y., Lau, M. Y., Siu, W. L., Yu, K. M., Lo, C. N., & Ng, J. (2017). Changes in lower limb strength and function following lumbar spinal mobilization. Journal of manipulative and physiological therapeutics40(8), 587-596.
    • Pelvic Floor:
  208. de Almeida, B. S. N., Sabatino, J. H., & Giraldo, P. C. (2010). Effects of high-velocity, low-amplitude spinal manipulation on strength and the basal tonus of female pelvic floor muscles. Journal of manipulative and physiological therapeutics33(2), 109-116.
  209. Haavik, H., Murphy, B. A., & Kruger, J. (2016). Effect of spinal manipulation on pelvic floor functional changes in pregnant and nonpregnant women: A preliminary study. Journal of manipulative and physiological therapeutics39(5), 339-347.
    • Hamstrings
  210. (89) Tamer, S., Öz, M., & Ülger, Ö. (2014). Effects of Sacroiliac Joint Mobilization on Hamstring Muscle Flexibility and Quadriceps Muscle Strength. Orthopaedic journal of sports medicine2(11_suppl3), 2325967114S00174.
    • Quadriceps
  211. (88) Gong, W. T., Ma, S. Y., & Kim, B. G. (2007). The Influence of Sacroiliac Joint Mobilization on Lower Extremity Muscle Strength. Journal of the Korean Society of Physical Medicine2(2), 101-112.
  212. (61) Kim, B. K., An, H. J., Heo, S. Y., Kim, B. J., & Choi, W. S. (2018). Effects of Lumbar Central Posteroanterior Mobilization on Isometric Knee Extension and Patellar Tendon Reflex Amplitude: A Pilot Study. Journal of International Academy of Physical Therapy Research9(1), 1435-1441.
  213. (106) Grindstaff, T. L., Hertel, J., Beazell, J. R., Magrum, E. M., & Ingersoll, C. D. (2009). Effects of lumbopelvic joint manipulation on quadriceps activation and strength in healthy individuals. Manual therapy14(4), 415-420.
  214. Sanders, G. D., Nitz, A. J., Abel, M. G., Symons, T. B., Shapiro, R., Black, W. S., & Yates, J. W. (2015). Effects of lumbosacral manipulation on isokinetic strength of the knee extensors and flexors in healthy subjects: a randomized, controlled, single-blind crossover trial. Journal of chiropractic medicine14(4), 240-248.
  215. (108) Grindstaff, T. L., Hertel, J., Beazell, J. R., Magrum, E. M., Kerrigan, D. C., Fan, X., & Ingersoll, C. D. (2012). Lumbopelvic joint manipulation and quadriceps activation of people with patellofemoral pain syndrome. Journal of athletic training47(1), 24-31.
  216. (109) Passmore, S. R., Johnson, M. G., Aloraini, S. M., Cooper, S., Aziz, M., & Glazebrook, C. M. (2019). Impact of Spinal Manipulation on Lower Extremity Motor Control in Lumbar Spinal Stenosis Patients: A Small-Scale Assessor-Blind Randomized Clinical Trial. Journal of Manipulative and Physiological Therapeutics42(1), 23-33.
  217. Suter, E., McMorland, G., Herzog, W., & Bray, R. (1999). Decrease in quadriceps inhibition after sacroiliac joint manipulation in patients with anterior knee pain. Journal of Manipulative and Physiological Therapeutics22(3), 149-153.
  218. Suter, E., McMorland, G., Herzog, W., & Bray, R. (2000). Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial. Journal of manipulative and physiological therapeutics, 23(2), 76-80.
    • Gluteus Maximus and Medius
  219. Yerys, S., Makofsky, H., Byrd, C., Pennachio, J., & Cinkay, J. (2002). Effect of mobilization of the anterior hip capsule on gluteus maximus strength. Journal of Manual & Manipulative Therapy10(4), 218-224.
  220. Makofsky, H., Panicker, S., Abbruzzese, J., Aridas, C., Camp, M., Drakes, J., … & Sileo, R. (2007). Immediate effect of grade IV inferior hip joint mobilization on hip abductor torque: a pilot study. Journal of Manual & Manipulative Therapy15(2), 103-110.
    • Shoulder Muscles
  221. Swanson, B. T., Holst, B., Infante, J., Poenitzsch, J., & Ortiz, A. (2016). EMG activity of selected rotator cuff musculature during grade III distraction and posterior glide glenohumeral mobilization: results of a pilot trial comparing painful and non-painful shoulders. Journal of Manual & Manipulative Therapy24(1), 7-13.
  222. Ribeiro, D. C., Sole, G., Venkat, R., & Shemmell, J. (2017). Differences between clinician-and self-administered shoulder sustained mobilization on scapular and shoulder muscle activity during shoulder abduction: A repeated-measures study on asymptomatic individuals. Musculoskeletal Science and Practice30, 25-33.
  223. Ribeiro, D. C., Day, A., & Dickerson, C. R. (2017). Grade-IV inferior glenohumeral mobilization does not immediately alter shoulder and scapular muscle activity: a repeated-measures study in asymptomatic individuals. Journal of Manual & Manipulative Therapy25(5), 260-269.
    • Knee Muscles
  224. Kaya Mutlu, E., Ercin, E., Razak Ozdıncler, A., & Ones, N. (2018). A comparison of two manual physical therapy approaches and electrotherapy modalities for patients with knee osteoarthritis: A randomized three arm clinical trial. Physiotherapy theory and practice34(8), 600-612.
  225. Ghanbari, A., & Kamalgharibi, S. (2013). Effect of knee joint mobilization on quadriceps muscle strength. International Journal of Health and Rehabilitation Sciences (IJHRS), 2(4), 186-91.
    • Ankle
  226. Ersoy, U., Kocak, U. Z., Unuvar, E., & Unver, B. (2019). The Acute Effect of Talocrural Joint Mobilization on Dorsiflexor Muscle Strength in Healthy Individuals: A Randomized Controlled Single-Blind Study. Journal of sport rehabilitation, 28(6), 601-605.
    • Distal Muscles
  227. de Camargo, V. M., Alburquerque-Sendín, F., Bérzin, F., Stefanelli, V. C., de Souza, D. P. R., & Fernández-de-las-Peñas, C. (2011). Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: a randomized controlled trial. Journal of manipulative and physiological therapeutics34(4), 211-220.
  228. Dunning, J., & Rushton, A. (2009). The effects of cervical high-velocity low-amplitude thrust manipulation on resting electromyographic activity of the biceps brachii muscle. Manual therapy14(5), 508-513.
  229. Sueki, D., Almaria, S., Bender, M., & McConnell, B. (2018). The immediate and 1-week effects of mid-thoracic thrust manipulation on lower extremity passive range of motion. Physiotherapy theory and practice, 1-11.
  230. Pollard, H., & Ward, G. (1998). The effect of upper cervical or sacroiliac manipulation on hip flexion range of motion. Journal of manipulative and physiological therapeutics, 21(9), 611-616.
  231. Pollard, H., & Ward, G. (1997). The effect of sacroiliac manipulation on hip flexion range of motion. Australasian Chiropractic & Osteopathy, 6(3), 80.
    • Reflexive Activity
  232. Nougarou, F., Pagé, I., Loranger, M., Dugas, C., & Descarreaux, M. (2016). Neuromechanical response to spinal manipulation therapy: effects of a constant rate of force application. BMC complementary and alternative medicine16(1), 161.
  233. Herzog, W., Conway, P. J., Zhang, Y. T., Gal, J., & Guimaraes, A. C. (1995). Reflex responses associated with manipulative treatments on the thoracic spine: a pilot study. Journal of manipulative and physiological therapeutics18(4), 233-236.
  234. Herzog, W., Scheele, D., & Conway, P. J. (1999). Electromyographic responses of back and limb muscles associated with spinal manipulative therapy. Spine24(2), 146-152.
  235. Currie, S. J., Myers, C. A., Durso, C., Enebo, B. A., & Davidson, B. S. (2016). The neuromuscular response to spinal manipulation in the presence of pain. Journal of manipulative and physiological therapeutics39(4), 288-293.
    • Symptomatic versus Asymptomatic
  236. Colloca, C. J., & Keller, T. S. (2001). Stiffness and neuromuscular reflex response of the human spine to posteroanterior manipulative thrusts in patients with low back pain. Journal of manipulative and physiological therapeutics24(8), 489-500.
    • Muscle Activity and Outcomes
  237. Kamel, D. M., Raoof, N. A. A., & Tantawy, S. A. (2016). Efficacy of lumbar mobilization on postpartum low back pain in Egyptian females: A randomized control trial. Journal of back and musculoskeletal rehabilitation29(1), 55-63.
  238. Hanrahan, S., Van Lunen, B. L., Tamburello, M., & Walker, M. L. (2005). The short-term effects of joint mobilizations on acute mechanical low back dysfunction in collegiate athletes. Journal of athletic training40(2), 88.
  239. Abe, K. Y., Tozim, B. M., & Navega, M. T. (2015). Acute effects of Maitland’s central posteroanterior mobilization on youth with low back pain. Manual Therapy, Posturology & Rehabilitation Journal, 1-5.
  240. Marshall, P., & Murphy, B. (2006). The effect of sacroiliac joint manipulation on feed-forward activation times of the deep abdominal musculature. Journal of manipulative and physiological therapeutics29(3), 196-202.
  241. Cibulka, M. T., Rose, S. J., Delitto, A., & Sinacore, D. R. (1986). Hamstring muscle strain treated by mobilizing the sacroiliac joint. Physical therapy66(8), 1220-1223.
  242. Shih, Y. F., Yu, H. T., Chen, W. Y., Liao, K. K., Lin, H. C., & Yang, Y. R. (2018). The effect of additional joint mobilization on neuromuscular performance in individuals with functional ankle instability. Physical Therapy in Sport, 30, 22-28.
  243. Ko, T., Lee, S., & Lee, D. (2009). Manual therapy and exercise for OA knee: effects on muscle strength, proprioception, and functional performance. Journal of Physical Therapy Science21(4), 293-299.
    • Joint Position Sense
  244. Gong, W. (2014). The influence of lumbar joint mobilization on joint position sense in normal adults. Journal of physical therapy science26(12), 1985-1987.
  245. Yang J, Lee B, Kim C. Changes in proprioception and pain in patients with neck pain after upper thoracic manipulation. J Phys Ther Sci. 2015;27(3):795-8.
  246. Learman, K. E., Myers, J. B., Lephart, S. M., Sell, T. C., Kerns, G. J., & Cook, C. E. (2009). Effects of spinal manipulation on trunk proprioception in subjects with chronic low back pain during symptom remission. Journal of manipulative and physiological therapeutics32(2), 118-126.
    • Balance
  247. Farazdaghi, M. R., Motealleh, A., Abtahi, F., Panjan, A., Šarabon, N., & Ghaffarinejad, F. (2018). Effect of sacroiliac manipulation on postural sway in quiet standing: a randomized controlled trial. Brazilian journal of physical therapy22(2), 120-126.
  248. Son, J. H., Park, G. D., & Park, H. S. (2014). The effect of sacroiliac joint mobilization on pelvic deformation and the static balance ability of female university students with SI joint dysfunction. Journal of physical therapy science26(6), 845-848.
  249. Kim, B. K., An, H. J., Heo, S. Y., Kim, B. J., & Choi, W. S. (2018). Effects of Lumbar Central Posteroanterior Mobilization on Isometric Knee Extension and Patellar Tendon Reflex Amplitude: A Pilot Study. Journal of International Academy of Physical Therapy Research9(1), 1435-1441.
  250. Heo, S. Y., Kim, B. K., Moon, O. K., & Choi, W. S. (2018). Immediate Effects of Lumbar Rotational Mobilization on the One-Legged Standing Ability in Healthy Individuals: A Randomized Controlled Trial. Journal of International Academy of Physical Therapy Research9(3), 1521-1527.
  251. Gong, W. T., & Han, J. M. (2005). The effects of Sacroiliac joint mobilization on the Equilibrium Ability. The Journal of Korean Academy of Orthopedic Manual Physical Therapy11(1), 29-36.
  252. Gong, W. T., Jung, Y. W., & Bae, S. S. (2005). The effects of sacroiliac joint mobilization and lumbopelvic stabilizing exercises on the equilibrium ability. The Journal of Korean Physical Therapy17(3), 285-295.
    • Pulmonary function
  253. Shin, D. C., & Lee, Y. W. (2016). The immediate effects of spinal thoracic manipulation on respiratory functions. Journal of physical therapy science28(9), 2547-2549.
  254. da Silva, P. H. L., de Ré, D., Behne, G. R., Vazatta, M. P., & de Carvalho, A. R. (2013). Maximum respiratory pressure alterations after spinal manipulation. The European Journal of Physiotherapy15(2), 64-69.
  255. Jung, J. H., & Moon, D. C. (2015). The effect of thoracic region self-mobilization on chest expansion and pulmonary function. Journal of physical therapy science27(9), 2779-2781.
  256. Joo, S., Lee, Y., & Song, C. H. (2018). Immediate Effects of Thoracic Spinal Manipulation on Pulmonary Function in Stroke Patients: A Preliminary Study. Journal of manipulative and physiological therapeutics41(7), 602-608.
    • Additional Research
  257. Riley, S. P., Cote, M. P., Leger, R. R., Swanson, B. T., Tafuto, V., Sizer, P. S., & Brismée, J. M. (2015). Short-term effects of thoracic spinal manipulations and message conveyed by clinicians to patients with musculoskeletal shoulder symptoms: a randomized clinical trial. Journal of Manual & Manipulative Therapy, 23(1), 3-11.
  258. Niemistö, L., Lahtinen-Suopanki, T., Rissanen, P., Lindgren, K. A., Sarna, S., & Hurri, H. (2003). A randomized trial of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain. Spine, 28(19), 2185-2191.
  259. Niemistö, L., Rissanen, P., Sarna, S., Lahtinen-Suopanki, T., Lindgren, K. A., & Hurri, H. (2005). Cost-effectiveness of combined manipulation, stabilizing exercises, and physician consultation compared to physician consultation alone for chronic low back pain: a prospective randomized trial with 2-year follow-up. Spine, 30(10), 1109-1115.
  260. Lluch, E., Duenas, L., Falla, D., Baert, I., Meeus, M., Sanchez-Frutos, J., & Nijs, J. (2018). Preoperative pain neuroscience education combined with knee joint mobilization for knee osteoarthritis. The Clinical journal of pain, 34(1), 44-52.

© 2025 Brookbush Institute. All rights reserved.

Comments

Guest