Muscle Fiber Types
Physiology and anatomy of muscle fiber types, differences in structure, adaptations, and contribution to human movement and performance. Detailed description of Type 1 (slow twitch), Type 2a, and Type 2b/2x (fast twitch) fibers.
Test Critical Content
Mark As Complete
Course Description: Muscle Fiber Types
Skeletal muscle fiber cells are highly adaptable to the stress that exercise imposes; improving their capacity to perform a similar activity in subsequent bouts. These cells have specific characteristics and unique adaptative abilities that allow them to improve their capacity to generate force in varied conditions. Understanding how to target these unique adaptive abilities, by altering training variables, may aid in implementing a more effective stimulus for better outcomes in fitness, performance, and physical rehabilitation settings.
This course reviews muscle fiber types including fiber type classifications and sub-classifications; as well as, pure and hybrid fibers (a.k.a. transitional fibers.). Further, this course details single muscle fiber twitch speeds and characteristics, fiber type proportion changes, fiber type adaptations to training, fiber types and athletic performance, and fiber type changes correlated with the aging process and exercise for older adults.
One of the most popular segments of this course is our table listing fiber type proportions by muscle group (snippet below). For example, did you know that the soleus is primarily type I muscle fiber, the gluteus maximus has a nearly even proportion of type I and type II fibers, and the sternocleidomastoid is primarily type II muscle fibers?
Movement professionals (personal trainers, fitness instructors, physical therapists, athletic trainers, massage therapists, chiropractors, occupational therapists, etc.) should consider this course to be foundational physiology content, which is essential for understanding future courses including acute variables, corrective exercise, strength training program design, etc.
Pre-approved Credits for:
Pre-approved for Continuing Education Credits for:
- Athletic Trainers
- Chiropractors
- Group Exercise Instructors
- Massage Therapists
- Occupational Therapists - Intermediate
- Personal Trainers
- Physical Therapists
- Physical Therapy Assistants
- Physiotherapists
This course includes:
- AI Tutor
- Study Guide
- Text and Illustrations
- Audio Voice-over
- Research Review
- Practice Exam
- Pre-approved 1 Credit Final Exam
Additional Courses:

Snippets from the Course:
Pure Fiber Types
- Type I a.k.a. red fibers, slow/oxidative (SO) fibers, slow twitch fibers, myosin heavy chain (MHC) I fibers
- Type IIA a.k.a. pink fibers, fast/oxidative (FOG fibers), "intermediate" fibers, MHC IIA fibers
- Type IIB/X a.k.a. white fibers, fast/glycolytic (FG fibers), fast twitch fibers, or MHC IIx fibers or MHC IIb fibers (Note: Type IIb fibers is actually a misnomer, as this myosin chain configuration does not exist in humans).
Possible MHC Isoform Combinations (a.k.a. hybrid Fibers or transitional fibers):
- Type I and IIA
- Type IIA and IIB/X
- Type I, IIA, IIB/X
Fiber Type Proportions by Muscle (Segment of Table):
Muscle | Mean % of Type I Fibers | Mean % Percentage of Type II Fibers |
Abductor digiti minimi | 51.8 | 48.2 |
Abductor pollicis brevis | 63.0 | 37.0 |
Adductor magnus (surface) | 53.5 | 46.5 |
Adductor magnus {deep) | 63.3 | 36.7 |
Adductor pollicis | 80.4 | 19.6 |
Biceps brachii (surface) (6, 42, 44-46) | 42.3 | 57.7 |
Course Study Guide: Muscle Fiber Types
Introduction5 Sub Sections
Muscle Fiber Types4 Sub Sections
Muscle Specific Fiber Types3 Sub Sections
Genetics, Fiber Types and Athletic Performance2 Sub Sections
Fiber Type Specific Adaptations2 Sub Sections
Sample Routine: Total Body Advanced Performance Program
Bibliography
- Booth, F. W., & Thomason, D. B. (1991). Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiological Reviews, 71(2), 541-585.
- Chilibalin, AV., Yu, M., Ryder, JW., Song, XM. and Galuska, D et al. (2000). Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin receptor substrates 1 and 2. Proceedings of the National Academy of Sciences, 97, 670-672.
- Hawley, JA. (2002). Adaptations of skeletal muscle to prolonged, intense endurance training. Clinical and Experimental Pharmaceutical Physiology, 29, 218-222.
- Fluck, M. and Hoppler, H. (2003). Molecular basis of skeletal muscle plasticity – From gene to form and function. Reviews of Physiology, Biochemistry and Pharmacology, 146, 159-216.
- Schiaffino, S., & Reggiani, C. (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiological Reviews, 76(2), 371-423.
- Jennekins, FGI., Tomlinson, BE. And Walton, JN. (1971). The sizes of the two main histochemical fibre types in five limb muscles in man. Journal of Neurological Sciences, 13(3), 281-292.
- Gollnick PD, Korge P, Karpakka J, Saltin B. (1991). Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiologica Scandinavica, 142, 135–136.
- Weiss, A., McDonough, D., Wertman, B., Acakpo-Satchivi, L., Montgomery, K., Kucherlapati, R., … & Krauter, K. (1999). Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proceedings of the National Academy of Sciences, 96(6), 2958-2963.
- Wells, L., Edwards, K. A., & Bernstein, S. I. (1996). Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. The EMBO Journal, 15(17), 4454-4459.
- Bárány, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. The Journal of General Physiology, 50(6), 197-218.
- Lännergren, J., & Westerblad, H. (1987). Action potential fatigue in single skeletal muscle fibres of Xenopus. Acta Physiologica Scandinavica, 129(3), 311-318.
- Reiser, P. J., Moss, R., Giulian, G. G., & Greaser, M. L. (1985). Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. Journal of Biological Chemistry, 260(16), 9077-9080.
- Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Gergely, J., & Sreter, F. A. (1986). Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers. American Journal of Physiology-Cell Physiology, 251(3), C431-C434.
- Weiss, A., Schiaffino, S., & Leinwand, L. A. (1999). Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. Journal of Molecular Biology, 290(1), 61-75.
- Bárány, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. The Journal of General Physiology, 50(6), 197-218.
- Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science, 261(5117), 58-65.
- Irving, M., Piazzesi, G., Lucii, L., Sun, Y. B., Harford, J. J., Dobbie, I. M., … & Lombardi, V. (2000). Conformation of the myosin motor during force generation in skeletal muscle. Nature Structural and Molecular Biology, 7(6), 482.
- Volkmann, N., Hanein, D., Ouyang, G., Trybus, K. M., DeRosier, D. J., & Lowey, S. (2000). Evidence for cleft closure in actomyosin upon ADP release. Nature Structural and Molecular Biology, 7(12), 1147.
- Tyska, M. J., & Warshaw, D. M. (2002). The myosin power stroke. Cell Motility and the Cytoskeleton, 51(1), 1-15.
- Dubowitz, V., & Pearse, A. E. (1960). A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemistry and Cell Biology, 2(2), 105-117.
- Needham, D. M. (1926). Red and white muscle. Physiological Reviews, 6(1), 1-27.
- Engel, W. K. (1998). The essentiality of histo-and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology, 51(3), 778-794.
- Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research, 316(18), 3093-3099.
- D’Antona, G., Lanfranconi, F., Pellegrino, M. A., Brocca, L., Adami, R., Rossi, R., & Bottinelli, R. (2006). Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. The Journal of Physiology, 570(3), 611-627.
- Trappe, S., Williamson, D., Godard, M., Porter, D., Rowden, G., & Costill, D. (2000a). Effect of resistance training on single muscle fiber contractile function in older men. Journal of Applied Physiology, 89(1), 143-152.
- Trappe, S., Costill, D., & Thomas, R. (2000b). Effect of swim taper on whole muscle and single muscle fiber contractile properties. Medicine and Science in Sports and Exercise, 32(12), 48-56.
- Trappe, S., Godard, M., Gallagher, P., Carroll, C., Rowden, G., & Porter, D. (2001). Resistance training improves single muscle fiber contractile function in older women. American Journal of Physiology-Cell Physiology, 281(2), C398-C406.
- Trappe, S., Gallagher, P., Harber, M., Carrithers, J., Fluckey, J., & Trappe, T. (2003). Single muscle fibre contractile properties in young and old men and women. The Journal of Physiology, 552(1), 47-58.
- Frontera, W. R., Suh, D., Krivickas, L. S., Hughes, V. A., Goldstein, R., & Roubenoff, R. (2000). Skeletal muscle fiber quality in older men and women. American Journal of Physiology-Cell Physiology, 279(3), C611-C618.
- Widrick, J. J., Stelzer, J. E., Shoepe, T. C., & Garner, D. P. (2002). Functional properties of human muscle fibers after short-term resistance exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(2), R408-R416.
- Shoepe, T. C., Stelzer, J. E., Garner, D. P., & Widrick, J. J. (2003). Functional adaptability of muscle fibers to long-term resistance exercise. Medicine and Science in Sports and Exercise, 35(6), 944.
- Harber, M. P., Gallagher, P. M., Creer, A. R., Minchev, K. M., & Trappe, S. W. (2004a). Single muscle fiber contractile properties during a competitive season in male runners. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(5), R1124-R1131.
- Harber, M., & Trappe, S. (2008). Single muscle fiber contractile properties of young competitive distance runners. Journal of Applied Physiology, 105(2), 629-636.
- Methenitis, S., Karandreas, N., Spengos, K., Zaras, N., Stasinaki, A. N., & Terzis, G. (2016). Muscle Fiber Conduction Velocity, Muscle Fiber Composition, and Power Performance. Medicine and Science in Sports and Exercise, 48(9), 1761-1771.
- Widrick, J. J., Trappe, S. W., Blaser, C. A., Costill, D. L., & Fitts, R. H. (1996). Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. American Journal of Physiology-Cell Physiology, 271(2), C666-C675.
- Brooke, MH. And Kaiser, KK. (1970). Three myosin ATPase systems. The nature of their PH liability and sulphydryl dependence. Journal of Histochemistry and Cytochemistry, 18, 670-672
- Karp, J. R. (2001). Muscle fiber types and training. Strength and Conditioning Journal, 23(5), 21-26.
- Bottinelli, R., Canepari, M., Pellegrino, M. A., & Reggiani, C. (1996). Force‐velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. The Journal of Physiology, 495(2), 573-586.
- Widrick, J. J., Trappe, S. W., Blaser, C. A., Costill, D. L., & Fitts, R. H. (1996). Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. American Journal of Physiology-Cell Physiology, 271(2), C666-C675.
- Smerdu, V., Karsch-Mizrachi, I., Campione, M., Leinwand, L., & Schiaffino, S. (1994). Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. American Journal of Physiology-Cell Physiology, 267(6), C1723-C1728.
- Travnik, L., Pernus, F., & Erzen, I. (1995). Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. Journal of Anatomy, 187(Pt 2), 403.
- Dahmane, R., Djordjevič, S., Šimunič, B., & Valenčič, V. (2005). Spatial fiber type distribution in normal human muscle: histochemical and tensiomyographical evaluation. Journal of Biomechanics, 38(12), 2451-2459.
- Johnson, M. A., Polgar, J., Weightman, D., & Appleton, D. (1973). Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. Journal of the Neurological Sciences, 18(1), 111-129.
- Srinivasan, R. C., Lungren, M. P., Langenderfer, J. E., & Hughes, R. E. (2007). Fiber type composition and maximum shortening velocity of muscles crossing the human shoulder. Clinical Anatomy, 20(2), 144-149.
- MacDougall, J. D., Sale, D. G., Alway, S. E., & Sutton, J. R. (1984). Muscle fiber number in biceps brachii in bodybuilders and control subjects. Journal of Applied Physiology, 57(5), 1399-403.
- Nygaard, E., & Sanchez, J. (1982). Intramuscular variation of fiber types in the brachial biceps and the lateral vastus muscles of elderly men: how representative is a small biopsy sample?. The Anatomical Record, 203(4), 451-459.
- Humphrey, K. E. (1982). An investigation of the fibre composition in the deltoid muscle of elite British slalom kayak competitors' BA thesis. University College of North Wales.
- Mavidis, A., Vamvakoudis, E., Metaxas, T., Stefanidis, P., Koutlianos, N., Christoulas, K. & Mandroukas, K. (2007). Morphology of the deltoid muscles in elite tennis players. Journal of Sports Sciences, 25(13), 1501-1506.
- Tesch, P. A., & Karlsson, J. (1983). Muscle fiber type characteristics of M. deltoideus in wheelchair athletes. Comparison with other trained athletes. American Journal of Physical Medicine, 62(5), 239-243.
- Edgerton, V. R., Smith, J. L., & Simpson, D. R. (1975). Muscle fibre type populations of human leg muscles. The Histochemical Journal, 7(3), 259-266. – take out
- Keh-Evans, L., Rice, C. L., Noble, E. G., Paterson, D. H., Cunningham, D. A., & Taylor, A. W. (1992). Comparison of histochemical, biochemical and contractile properties of triceps surae of trained aged subjects. Canadian Journal on Aging/La Revue Canadienne du Vieillissement, 11(4), 412-425.
- Sirca, A., & Sus̆ec-Michieli, M. (1980). Selective type II fibre muscular atrophy in patients with osteoarthritis of the hip. Journal of the Neurological Sciences, 44(2), 149-159.
- Dahmane, R., Djordjevič, S., & Smerdu, V. (2006). Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Medical and Biological Engineering and Computing, 44(11), 999.
- Evangelidis, P. E., Massey, G. J., Ferguson, R. A., Wheeler, P. C., Pain, M. T., & Folland, J. P. (2016). The functional significance of hamstrings composition: is it really a “fast” muscle group?. Scandinavian Journal of Medicine & Science in Sports.
- Pierrynowski, M. R., & Morrison, J. B. (1985). A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects. Mathematical Biosciences, 75(1), 69-101.
- Gollnick, P. D., Armstrong, R. B., Saubert 4th, C. W., Piehl, K., & Saltin, B. (1972). Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. Journal of Applied Physiology, 33(3), 312-319.
- Arbanas, J., Starcevic Klasan, G., Nikolic, M., Jerkovic, R., Miljanovic, I., & Malnar, D. (2009). Fibre type composition of the human psoas major muscle with regard to the level of its origin. Journal of Anatomy, 215(6), 636-641.
- Hards, J. M., Reid, W. D., Pardy, R. L., & Baré, P. D. (1990). Respiratory muscle fiber morphometry: correlation with pulmonary function and nutrition. Chest, 97(5), 1037-1044.
- Baker, S. J., & Hardy, L. (1989). Effects of high intensity canoeing training on fibre area and fibre type in the latissimus dorsi muscle. British Journal of Sports Medicine, 23(1), 23-26.
- Paoli, A., Pacelli, Q. F., Toniolo, L., Miotti, D., & Reggiani, C. (2010). Latissimus dorsi fine needle muscle biopsy: a novel and efficient approach to study proximal muscles of upper limbs. Journal of Surgical Research, 164(2), e257-e263.
- Garrett Jr, W. E., Califf, J. C., & Bassett, F. H. (1984). Histochemical correlates of hamstring injuries. The American Journal of Sports Medicine, 12(2), 98-103.
- Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., … & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European Journal of Applied Physiology, 88(1-2), 50-60.
- Schantz, P., Randall-Fox, E., Hutchison, W., & Tyden, Astrand, P. O (1983). Muscle fiber type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiologica Scandinavica, 117, 219-226.
- Gouzi, F., Maury, J., Molinari, N., Pomiès, P., Mercier, J., Préfaut, C., & Hayot, M. (2013). Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years old: a systematic review and metaanalysis. Journal of Applied Physiology, 115(3), 346-354.
- Tesch, P., & Karlsson, J. (1978). Isometric strength performance and muscle fibre type distribution in man. Acta Physiologica, 103(1), 47-51.
- Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique, 50(6), 500-509.
- Pette, D., & Staron, R. S. (2001). Transitions of muscle fiber phenotypic profiles. Histochemistry and Cell Biology, 115(5), 359-372.
- Stephenson, G. M. (2001). Hybrid skeletal muscle fibres: a rare or common phenomenon?. In Australian Physiological and Pharmacological Society, 32(1), 69.
- Bottinelli, R., Schiaffino, S., & Reggiani, C. (1991). Force‐velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. The Journal of Physiology, 437(1), 655-672.
- Bottinelli R, Betto R, Schiaffino S, Reggiani C. 1994a. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. Journal of Physiology, 478:341–349.
- Galler S, Schmitt T, Pette D. 1994. Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. Journal of Physiology, 478:523–531.
- Hilber K, Galler S, Gohlsch B, Pette D. 1999. Kinetic properties of myosin heavy chain isoforms in single fibers from human skeletal muscle. FEBS Lett, 455, 267–270.
- Andersen, J. L., Mohr, T., Biering-Sørensen, F., Galbo, H., & Kjaer, M. (1996). Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflügers Archiv, 431(4), 513-518.
- Klitgaard, H., Zhou, M., & Richter, E. A. (1990). Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders. Acta Physiologica Scandinavica, 140(2), 175-180.
- Larsson, L., Li, X., & Frontera, W. R. (1997). Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. American Journal of Physiology-Cell Physiology, 272(2), C638-C649.
- Staron, R. S., & Pette, D. (1987). The multiplicity of combinations of myosin light chains and heavy chains in histochemically typed single fibres. Rabbit soleus muscle. Biochemical Journal, 243(3), 687-693.
- Stephenson, G. M. (2001). Hybrid skeletal muscle fibres: a rare or common phenomenon?. In Australian Physiological and Pharmacological Society, 32(1), 69.
- Scott, W., Stevens, J., & Binder–Macleod, S. A. (2001). Human skeletal muscle fiber type classifications. Physical Therapy, 81(11), 1810-1816.
- Bagley, J. R. (2014). Fibre type‐specific hypertrophy mechanisms in human skeletal muscle: potential role of myonuclear addition. The Journal of Physiology, 592(23), 5147-5148.
- Staron, R. S., Leonardi, M. J., Karapondo, D. L., Malicky, E. S., Falkel, J. E., Hagerman, F. C., & Hikida, R. S. (1991). Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. Journal of Applied Physiology, 70(2), 631.
- Andersen JL, Klitgaard H, Bangsbo J, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of soccer players: effects of strength-training. Acta Physiol Scand. 1994;150(1):21-6.
- Häkkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle‐aged and older men and women. Acta Physiologica Scandinavica, 171(1), 51-62.
- Häkkinen, K., Alen, M., Kraemer, W. J., Gorostiaga, E., Izquierdo, M., Rusko, H., … & Romu, S. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. European Journal of Applied Physiology, 89(1), 42-52.
- Jansson E, Sjodin B, Tesch P. Changes in muscle fibre type distribution in man after physical training. A sign of fibre type transformation? Acta Physiol Scand. 1978;104(2):235-7.
- Häggmark, T., Eriksson, E., & Jansson, E. (1986). Muscle fiber type changes in human skeletal muscle after injuries and immobilization. Orthopedics, 9(2), 181-185.
- Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord, 35(2), 86.
- Mannion, A. F., Weber, B. R., Dvorak, J., Grob, D., & Müntener, M. (1997). Fibre type characteristics of the lumbar paraspinal muscles in normal healthy subjects and in patients with low back pain. Journal of Orthopaedic Research, 15(6), 881-887.
- Saltin, B., Henrickson, J., Nygaard, E. and Anderson, P. (1977). Fibre types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Annals of the New York Academy of Sciences, 301: 3-44.
- Costill, DL., Daniels, J., Evans, W., Krahenbuhl, G. (1976). Skeletal muscle enzymes and fibre composition in male and female track athletes. Journal of Applied Physiology, 40: 149-154.
- Fink, WJ., Costill, DL. and Pollock, ML. (1977). Submaximal and maximal working capacity of elite distance runners. Part II: Muscle fiber composition and enzyme activities. Annals of the New York Academy of Sciences, 301, 323-327.
- Trappe, S., Luden, N., Minchev, K., Raue, U., Jemiolo, B., & Trappe, T. A. (2015). Skeletal muscle signature of a champion sprint runner. Journal of Applied Physiology, 118(12), 1460-1466
- Fry, A. C., Schilling, B. K., Staron, R. S., Hagerman, F. C., Hikida, R. S., & Thrush, J. T. (2003b). Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters. Journal of Strength and Conditioning Research, 17(4), 746.
- Fry, A. C. (2004). The role of resistance exercise intensity on muscle fibre adaptations. Sports Medicine, 34(10), 663-679.
- Kesidis, N., Metaxas, T. I., Vrabas, I. S., Stefanidis, P., Vamvakoudis, E., Christoulas, K., … & Mandroukas, K. (2008). Myosin heavy chain isoform distribution in single fibres of bodybuilders. European Journal of Applied Physiology, 103(5), 579.
- Wilson, J. M., Loenneke, J. P., Jo, E., Wilson, G. J., Zourdos, M. C., & Kim, J. S. (2012). The effects of endurance, strength, and power training on muscle fiber type shifting. The Journal of Strength & Conditioning Research, 26(6), 1724-1729.
- Tesch, P., & Karlsson, J. (1978). Isometric strength performance and muscle fibre type distribution in man. Acta Physiologica, 103(1), 47-51.
- HortobÁgyi, T., Houmard, J. A., Stevenson, J. R., Fraser, D. D., Johns, R. A., & Israel, R. G. (1993). The effects of detraining on power athletes. Medicine and Science in Sports and Exercise, 25(8), 929-935.
- Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., & North, K. (2003). ACTN3 genotype is associated with human elite athletic performance. The American Journal of Human Genetics, 73(3), 627-631.
- Druzhevskaya, A. M., Ahmetov, I. I., Astratenkova, I. V., & Rogozkin, V. A. (2008). Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European Journal of Applied Physiology, 103(6), 631-634.
- Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., & Gao, L. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PloS one, 8(1), e54685.
- Niemi, A. K., & Majamaa, K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics, 13(8), 965-969.
- Moran, C. N., Yang, N., Bailey, M. E., Tsiokanos, A., Jamurtas, A., MacArthur, D. G., & Wilson, R. H. (2007). Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics, 15(1), 88-93.
- Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P., & Thomis, M. A. (2007). ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics, 32(1), 58-63.
- Papadimitriou, I. D., Papadopoulos, C., Kouvatsi, A., & Triantaphyllidis, C. (2008). The ACTN3 gene in elite Greek track and field athletes. International Journal of Sports Medicine, (29), 352-5.
- Roth, S. M., Walsh, S., Liu, D., Metter, E. J., Ferrucci, L., & Hurley, B. F. (2008). The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. European Journal of Human Genetics, 16(3), 391-394.
- Jones, N., Kiely, J., Suraci, B., Collins, D. J., de Lorenzo, D., Pickering, C., & Grimaldi, K. A. (2016). A genetic-based algorithm for personalized resistance training. Biology of Sport, 33(2), 117-126.
- Frontera, W. R., Suh, D., Krivickas, L. S., Hughes, V. A., Goldstein, R., & Roubenoff, R. (2000). Skeletal muscle fiber quality in older men and women. American Journal of Physiology-Cell Physiology, 279(3), C611-C618.
- Häkkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle‐aged and older men and women. Acta Physiologica Scandinavica, 171(1), 51-62.
- Aniansson, A., & Gustafsson, E. (1981). Physical training in elderly men with special reference to quadriceps muscle strength and morphology. Clinical Physiology, 1(1), 87-98.
- Brown, A. B., McCartney, N., & Sale, D. G. (1990). Positive adaptations to weight-lifting training in the elderly. Journal of Applied Physiology, 69(5), 1725.
- Charette, S. L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D., Wiswell, R. A., & Marcus, R. (1991). Muscle hypertrophy response to resistance training in older women. Journal of Applied Physiology, 70(5), 1912-1916.
- Roman, W. J., Fleckenstein, J., Stray-Gundersen, J., Alway, S. E., Peshock, R., & Gonyea, W. J. (1993). Adaptations in the elbow flexors of elderly males after heavy-resistance training. Journal of Applied Physiology, 74(2), 750-754.
- Pyka, G., Lindenberger, E., Charette, S., & Marcus, R. (1994). Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. Journal of Gerontology, 49(1), M22-M27.
- Krivickas, L. S., Suh, D., Wilkins, J., Hughes, V. A., Roubenoff, R., & Frontera, W. R. (2001). Age-and gender-related differences in maximum shortening velocity of skeletal muscle fibers. American Journal of Physical Medicine & Rehabilitation, 80(6), 447-455.
- Sharman, M. J., Newton, R. U., Triplett-McBride, T., McGuigan, M. R., McBride, J. M., Häkkinen, A., & Kraemer, W. J. (2001). Changes in myosin heavy chain composition with heavy resistance training in 60-to 75-year-old men and women. European Journal of Applied Physiology, 84(1-2), 127-132.
- Kosek, D. J., Kim, J. S., Petrella, J. K., Cross, J. M., & Bamman, M. M. (2006). Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. Journal of Applied Physiology, 101(2), 531-544.
- Churchward-Venne, T. A., Tieland, M., Verdijk, L. B., Leenders, M., Dirks, M. L., de Groot, L. C., & Van Loon, L. J. (2015). There are no nonresponders to resistance-type exercise training in older men and women. Journal of the American Medical Directors Association, 16(5), 400-411.
- Cote, C., Simoneau, J. A., Lagasse, P., Boulay, M., Thibault, M. C., Marcotte, M., & Bouchard, C. (1988). Isokinetic strength training protocols: do they induce skeletal muscle fiber hypertrophy?. Archives of Physical Medicine and Rehabilitation, 69(4), 281-285.
- Costill, D. L., Coyle, E. F., Fink, W. F., Lesmes, G. R., & Witzmann, F. A. (1979). Adaptations in skeletal muscle following strength training. Journal of Applied Physiology, 46(1), 96-99.
- Hather, B. M., Tesch, P. A., Buchanan, P., & Dudley, G. A. (1991). Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica, 143(2), 177-185.
- Raue, U., Terpstra, B., Williamson, D. L., Gallagher, P. M., & Trappe, S. W. (2005). Effects of short-term concentric vs. eccentric resistance training on single muscle fiber MHC distribution in humans. International Journal of Sports Medicine, 26(05), 339-343.
- Adams, G. R., Hather, B. M., Baldwin, K. M., & Dudley, G. A. (1993). Skeletal muscle myosin heavy chain composition and resistance training. Journal of Applied Physiology, 74(2), 911-915.
- Wang, Y. X., Zhang, C. L., Ruth, T. Y., Cho, H. K., Nelson, M. C., Bayuga-Ocampo, C. R., … & Evans, R. M. (2004). Regulation of muscle fiber type and running endurance by PPARδ. PLoS biology, 2(10), e294.
- McGuigan, M. R., Bronks, R., Newton, R. U., Sharman, M. J., Graham, J. C., Cody, D. V., & Kraemer, W. J. (2001). Resistance training in patients with peripheral arterial disease: effects on myosin isoforms, fiber type distribution, and capillary supply to skeletal muscle. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(7), B302-B310.
- Netreba, A., Popov, D., Bravyy, Y., Lyubaeva, E., Terada, M., Ohira, T., … & Ohira, Y. (2013). Responses of knee extensor muscles to leg press training of various types in human. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova, 99(3), 406-416.
- McCall, G. E., Byrnes, W. C., Dickinson, A., Pattany, P. M., & Fleck, S. J. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of Applied Physiology, 81(5), 2004-2012.
- Karavirta, L., Häkkinen, A., Sillanpää, E., García‐López, D., Kauhanen, A., Haapasaari, A., … & Gorostiaga, E. (2011). Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40–67‐year‐old men. Scandinavian Journal of Medicine & Science in Sports, 21(3), 402-411.
- Wang, N., Hikida, R. S., Staron, R. S., & Simoneau, J. A. (1993). Muscle fiber types of women after resistance training—quantitative ultrastructure and enzyme activity. Pflügers Archiv, 424(5-6), 494-502.
- Kraemer, W. J., Patton, J. F., Gordon, S. E., Harman, E. A., Deschenes, M. R., Reynolds, K. A. T. Y., … & Dziados, J. E. (1995). Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. Journal of Applied Physiology, 78(3), 976-989.
- Carroll, T. J., Abernethy, P. J., Logan, P. A., Barber, M., & McEniery, M. T. (1998). Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. European Journal of Applied Physiology and Occupational Physiology, 78(3), 270-275.
- Williamson, D. L., Gallagher, P. M., Carroll, C. C., Raue, U., & Trappe, S. W. (2001). Reduction in hybrid single muscle fiber proportions with resistance training in humans. Journal of Applied Physiology, 91(5), 1955-1961.
- Liu, Y., Schlumberger, A., Wirth, K., Schmidtbleicher, D., & Steinacker, J. M. (2003). Different effects on human skeletal myosin heavy chain isoform expression: strength vs. combination training. Journal of Applied Physiology, 94(6), 2282-2288.
- Harber, M. P., Fry, A. C., Rubin, M. R., Smith, J. C., & Weiss, L. W. (2004). Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scandinavian Journal of Medicine & Science in Sports, 14(3), 176-185.
- Farup, J., Sørensen, H., & Kjølhede, T. (2014). Similar changes in muscle fiber phenotype with differentiated consequences for rate of force development: Endurance versus resistance training. Human Movement Science, 34, 109-119.
Additional Research - Falla, D., Rainoldi, A., Merletti, R., & Jull, G. (2003). Myoelectric manifestations of sternocleidomastoid and anterior scalene muscle fatigue in chronic neck pain patients. Clinical Neurophysiology, 114(3), 488-495.
- Uhlig, Y., Weber, B. R., Grob, D., & Müntener, M. (1995). Fiber composition and fiber transformations in neck muscles of patients with dysfunction of the cervical spine. Journal of Orthopaedic Research, 13(2), 240-249.
- Zhao, W. P., Kawaguchi, Y., Matsui, H., Kanamori, M., & Kimura, T. (2000). Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine, 25(17), 2191-2199.
- Bajek, S., Bobinac, D., Bajek, G., Vranic, T. S., Lah, B., & Dragojevic, D. M. (2000). Muscle fiber type distribution in multifidus muscle in cases of lumbar disc herniation. Acta Medica Okayama, 54(6), 235-242.
- Rantanen, J., Hurme, M., Falck, B., Alaranta, H., Nykvist, F., Lehto, M., … & Kalimo, H. (1993). The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine, 18(5), 568-574.
- Ford, D., Bagnall, K. M., McFadden, K. D., Greenhill, B., & Raso, J. (1983). Analysis of vertebral muscle obtained during surgery for correction of a lumbar disc disorder. Cells Tissues Organs, 116(2), 152-157.
- Fidler, M. W., Jowett, R. L., & Troup, J. D. G. (1975). Myosin ATPase activity in multifidus muscle from cases of lumbar spinal derangement. Bone & Joint Journal, 57(2), 220-227.
- Kadi, F., Waling, K., Ahlgren, C., Sundelin, G., Holmner, S., Butler-Browne, G. S., & Thornell, L. E. (1998). Pathological mechanisms implicated in localized female trapezius myalgia. Pain, 78(3), 191-196.
- Lehto, M., Hurme, M., Alaranta, H., Einola, S., Falck, B., JÄrvinen, M., … & PaljÄrvi, L. (1989). Connective Tissue Changes of the Multifidus Muscle in Patients with Lumbar Disc Herniation An Immunohistologic Study of Collagen Types I and III and Fibronectin. Spine, 14(3), 302-309.
- Hides, J., Stanton, W., McMahon, S., Sims, K., & Richardson, C. (2008). Effect of stabilization training on multifidus musclecross-sectional area among young elite cricketers with low back pain. Journal of Orthopaedic & Sports Physical Therapy, 38(3), 101-108.
- Danneels, L. A., Vanderstraeten, G. G., Cambier, D. C., Witvrouw, E. E., Bourgois, J. D. W. D. C. H. J., Dankaerts, W., & De Cuyper, H. J. (2001). Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. British Journal of Sports Medicine, 35(3), 186-191.
- Hides, J. A., Jull, G. A., & Richardson, C. A. (2001). Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine, 26(11), e243-e248.
- Bishop, D., Jenkins, D. G., Mackinnon, L. T., McEniery, M., & Carey, M. F. (1999). The effects of strength training on endurance performance and muscle characteristics. Medicine & Science in Sports & Exercise, 31(6), 886-891.
- Aagaard, P., Andersen, J. L., Dyhre-Poulsen, P., Leffers, A. M., Wagner, A., Magnusson, S. P., & Simonsen, E. B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. The Journal of Physiology, 534(2), 613-623.
- Ogborn, D., & Schoenfeld, B. J. (2014). The Role of Fiber Types in Muscle Hypertrophy: Implications for Loading Strategies. Strength & Conditioning Journal, 36(2), 20-25.
- Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113(1), 71-77.
- Coyle, E. F., Feiring, D. C., Rotkis, T. C., Cote III, R. W., Roby, F. B., Lee, W., & Wilmore, J. H. (1981). Specificity of power improvements through slow and fast isokinetic training. Journal of Applied Physiology, 51(6), 1437-42.
- Paddon-Jones, D., Leveritt, M., Lonergan, A., & Abernethy, P. (2001). Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity. European Journal of Applied Physiology, 85(5), 466-471.
- Shepstone, T. N., Tang, J. E., Dallaire, S., Schuenke, M. D., Staron, R. S., & Phillips, S. M. (2005). Short-term high-vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 98(5), 1768-1776.
- Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., & Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. European Journal of Applied Physiology, 112(10), 3585-3595.
- Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., … & González‐Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724-735.
- Eftestøl, Einar, Ingrid M. Egner, Ida G. Lunde, Stian Ellefsen, Tom Andersen, Cecilie Sjåland, Kristian Gundersen, and Jo C. Bruusgaard. Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. American Journal of Physiology-Cell Physiology 311, no. 4 (2016): C616-C629..
© 2025 Brookbush Institute. All rights reserved.