Facebook Pixel
Brookbush Institute Logo
Hypertrophy Training: Evidence-based Model
Hypertrophy Training: Evidence-based Model

Hypertrophy Training: Evidence-based Model

Hypertrophy is one of the most common goals in resistance training, yet most hypertrophy models are based on expert opinion, mechanistic hypotheses, or partial readings of the literature. This is the first comprehensively evidence-based model.

Test Critical Content

Mark As Complete

Course Summary: Hypertrophy Training

Abstract:

Title: Hypertrophy Training: Evidence-based Model

Background: Hypertrophy is one of the most common goals in resistance training, yet most hypertrophy models are based on expert opinion, mechanistic hypotheses, or partial readings of the literature. Common recommendations often overlook key modifiable training variables (acute variables), misinterpret research, or emphasize complex methods with minimal added benefit. This course presents a comprehensive, outcome-driven hypertrophy model derived from systematic reviews of all major acute variables and their combined influence on muscle growth.

Objective: To synthesize all available research on modifiable acute variables affecting hypertrophy, including tempo, reps, load, range of motion (ROM), sets, rest intervals, circuit training, set strategies, training frequency, periodization, exercise order, and exercise selection, and to translate these findings into a practical, integrated programming framework for maximizing muscle growth.

Eligibility Criteria: Peer-reviewed and published human studies investigating resistance training interventions with hypertrophy-related outcomes (e.g., muscle cross-sectional area, muscle thickness, lean body mass, fiber-type CSA), including comparative and multi-arm trials that manipulate at least one acute variable. Studies of novice, experienced, older, and clinical or obese populations were included when hypertrophy or body-composition data were reported.

Information Sources: All available studies that could be located at the time of publication, including the research synthesized in 13 systematic reviews, each focused on a specific acute variable (tempo, reps, load, ROM, sets, rest, circuit training, set strategies, training frequency, periodization, exercise order, exercise selection, and power versus strength exercise selection).

Risk of Bias: Protocols differed in participant training status, program duration, exercise selection, load prescription (e.g., %1-RM vs. RPE/RIR), ROM definitions, and methods of measuring hypertrophy. Many studies were short, had small sample sizes, or were limited to a small number of exercises. Heterogeneous designs and incomplete reporting of volume and effort reduce the certainty of some comparisons and limit generalizability to advanced trainees or highly complex real-world programs.

Results: Hypertrophy is a robust adaptation that can be achieved with a wide variety of recommendations; however, the research exhibits trends that imply certain acute-variable ranges may result in better outcomes. Moderate and heavy loads, moderate repetition ranges, sets taken to or very near failure, full or large ROM, relatively longer rest intervals, multiple sets per muscle group, and a training frequency of approximately two sessions per muscle group per week tend to produce slightly better and more reliable hypertrophy outcomes. Light loads can be effective when sets are taken to failure, but very light loads and extremely high repetition ranges are less reliable. Full ROM appears to confer a small advantage for hypertrophy over partial ROM, with little evidence that lengthened partials outperform full or varied ROM. Longer rest between sets increases the ability to maintain load, reps, and technique, leading to greater volume and hypertrophy, while circuit training can preserve these benefits with far shorter session times. Advanced set strategies (e.g., pyramid sets and super-sets) and complex periodization models generally do not outperform simpler models when total volume, intensity, and proximity to failure are matched; however, true linear and daily undulating periodization, drop-sets, and session-to-session load adjustments may provide a small advantage for experienced exercisers. Exercise order primarily affects strength outcomes and total work on a given lift, with limited direct impact on hypertrophy when volume is matched. Exercise selection and stability progressions influence which muscles and motor units are stressed, but stable, loadable multi-joint exercises remain the foundation for hypertrophy-focused programming.

Limitations: Short intervention periods, small samples, heterogeneous protocols, limited data on very advanced athletes, and inconsistent reporting of volume, effort, and ROM reduce the certainty of some conclusions. Many studies do not directly compare “best-versus-best” protocols across all acute variables simultaneously, so the integrated model is based on converging trends rather than a single definitive trial.

Conclusions: Hypertrophy can be achieved with many approaches, but an evidence-based optimization of acute variables favors moderate and heavy loads, moderate rep ranges, sets to or near failure, large ROM, longer rest intervals, multiple sets per muscle group, and a training frequency of roughly two sessions per muscle group per week, supported by simple, responsive periodization. Advanced set strategies and complex periodization schemes offer marginal or context-specific benefits compared to consistent application of these fundamentals. The Brookbush Institute recommends a systematic, outcome-driven approach that integrates all modifiable acute variables to maximize expected value (reliability × effect size) for hypertrophy.

Registration: Not registered.

Keywords: hypertrophy; resistance training; acute variables; tempo; sets to failure; training frequency; periodization; exercise order; exercise selection

Introduction

Evidence-based hypertrophy programming recommendations.

This course was developed to answer a simple but surprisingly unsettled question: What does the total body of research actually say about training for muscle growth? Rather than relying on expert opinion, mechanistic hypotheses, or trending “guru” beliefs, this course integrates hundreds of peer-reviewed and published studies to develop evidence-based, best-practice recommendations. You will not learn “one magic protocol.” Instead, you will learn how acute variable ranges influence hypertrophy. Our systematic review demonstrates that many programs will “work”; however, “slightly better” options for each acute variable likely add up to significantly better outcomes over months and years.

Throughout the course, we emphasize outcomes over mechanisms. Mechanistic hypotheses (e.g., specific fiber-type recruitment, metabolite accumulation, or hormonal spikes) can be useful for generating ideas, but they are only valuable if they lead to recommendations that improve actual training outcomes. Wherever possible, we base recommendations on studies that directly compare practical programming decisions: full versus partial ROM, lighter versus heavier loads, short versus long rest intervals, single versus multiple sets, periodized versus non-periodized routines, and various set strategies and exercise orders.

We also highlight instances of research not supporting popular trends. For example, we address oversold concepts such as very high-volume training, complex block periodization for all populations, rest-interval prescriptions based on “goal,” the supposed superiority of lengthened partials, and exotic set structures to maximize hypertrophy. In many cases, these strategies add complexity without reliably improving outcomes, and in some cases, these strategies actually result in worse outcomes.

By the end of this course, you will be able to:

  • Understand how each modifiable acute variable influences hypertrophy outcomes.
  • Build programs that place most training time in optimal acute variable ranges. (e.g., moderate and heavy loads, moderate rep ranges, sets to or near failure, full ROM, longer rests, and 3–5 sets per muscle group per session).
  • Decide when to integrate advanced strategies, such as drop sets, circuits, or undulating periodization, and when they are unnecessary.
  • Evaluate existing hypertrophy programs, identify which recommendations are optimal or suboptimal, and systematically adjust variables to improve expected value (reliability × effect size) for a given client, patient, or athlete.

This course is designed for professionals who already understand some basics of resistance training but want to align their programming with the most complete and accurate hypertrophy model available. You will learn not only what to do, but become aware of the research that supports each recommendation, and how to adapt this model to real-world constraints, preferences, and goals.

 

Frequently Asked Questions (FAQs)

What is hypertrophy training?

  • Hypertrophy training is resistance training designed to increase muscle size by enlarging the cross-sectional area of muscle fibers. This training emphasizes factors such as sufficient weekly volume, sets taken close to failure, and progressive overload (gradually increasing load, volume, or both) for the body's large muscle groups. In practice, this usually translates to multi-joint exercises performed with moderate to heavy loads, multiple sets per muscle group, and enough rest and recovery to repeat high-quality efforts over weeks and months.

What is the best workout for hypertrophy?

  • There is no single “best” hypertrophy workout, but there are clear patterns in the research:
  • Train each major muscle group about 2 times per week.
  • Perform roughly 4–10 total sets per muscle group per week, with most sets taken to or very near failure.
  • Use mostly moderate and heavy loads (approximately 6–12 reps per set for most work, with some heavier and lighter sets added for variety).
  • Rest 2–3 minutes between hard sets for the same muscle group to maintain load, reps, and technique quality.
  • Build the program with multi-joint exercises (e.g., squats, presses, rows, pull-downs), adding single-joint work as needed.
    • Note: The purpose of this course is to show you which specific choices (tempo, load, ROM, rest, sets, frequency, periodization, exercise order, and exercise selection) are slightly better on average, and how stacking those small advantages can produce meaningfully better results over time.

What are the big 3 workouts (lifts) for hypertrophy?

  • In most training discussions, “the big 3” refers to squat, bench press, and deadlift. These lifts are popular because they involve multiple joints, a large amount of muscle mass, and permit the use of relatively heavy loads. They can absolutely be part of a hypertrophy program, but they are not mandatory, and the inclusion of these 3 exercises should not be considered a complete program. Muscles grow in response to stimulus (load, volume, training-to-failure/set, etc.), not to specific exercise names. Exercises should include additional exercises for the upper back, shoulders, and core musculature. Further, exercisers may benefit from unilateral exercise, like lunges, bent-over rows, and dumbbell press.
    • Note: In this course, we frame exercise selection around movement categories (push, pull, legs, plus optional accessory work) and moderately stable progressions rather than insisting on one standard “big 3” routine for everyone.

Do you need to lift heavy for hypertrophy?

  • No. You do not have to lift very heavy to build muscle. Studies show that light, moderate, and heavy loads can all produce similar hypertrophy when sets are taken close to failure, although moderate and heavy loads tend to be slightly more efficient and often produce better strength gains.
    • Practically, this means:
      • Most hypertrophy work should likely use moderate to heavy loads (roughly 6–12 reps per set).
      • Lighter loads can be used periodically to add variety, introduce new exercises, or reduce joint stress, as long as sets are still taken near failure.
      • Very heavy loads (1–2 reps) are not necessary for hypertrophy, and may not be effective. Further, they may increase the risk of injury, implying they are probably not worth the effort.

 

Pre-approved Credits for:

Pre-approved for Continuing Education Credits for:

This course includes:

  • AI Tutor
  • Course Summary Webinar
  • Study Guide
  • Text and Illustrations
  • Audio Voice-over
  • Research Review
  • Sample Routine
  • Practice Exam
  • Pre-approved 3 Credit Final Exam

Course Study Guide: Hypertrophy Training: Evidence-based Model

Hypertrophy Training: Webinar

Introduction: Hypertrophy Training

Summary of Research: Hypertrophy Training
4 Sub Sections

Research Findings: Acute Variables
13 Sub Sections

Research Findings: Exercises
5 Sub Sections

Sample Programs
2 Sub Sections

Bibliography

  1. Watanabe, Y., Tanimoto, M., Ohgane, A., Sanada, K., Miyachi, M. and Ishii, N. (2013) Increased muscle size and strength from slow-movement, low-intensity resistance exercise and tonic force generation. Journal of Aging and Physical Activity, 21, 71-84.
  2. Watanabe, Y., Madarame, H., Ogasawara, R., Nakazato, K. and Ishii, N. (2014) Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clinical Physiology and Functional Imaging, 34(6), 463-470
  3. Marzilger, R., Bohm, S., Mersmann, F. and Arampatzis, A. (2019) Effects of lengthening velocity during eccentric training on vastus lateralis muscle hypertrophy. Frontiers in Physiology, 10(957), doi: 10.3389/fphys.2019.00957
  4. Peterson, S. R., Bagnall, K. M., Wenger, H. A., Reid, D. C., Castor, W. R. and Quinney, H. A. (1989) The influence of velocity-specific resistance training on the in vivo torque-velocity relationship and the cross-sectional area of the quadriceps femoris. Journal of Orthopaedic and Sports Physical Therapy, 10(11), 456-462
  5. Tanimoto, M., & Ishii, N. (2006). Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. Journal of Applied Physiology, 100(4), 1150-1157.
  6. Claflin, D. R., Larkin, L. M., Cederna, P. S., Horowitz, J. F., Alexander, N. B., Cole, N. M., ... & Ashton-Miller, J. A. (2011). Effects of high-and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. Journal of applied physiology111(4), 1021-1030.
  7. Shepstone, T. N., Tang, J. E., Dallaire, S., Schuenke, M. D., Staron, R. S. and Phillips, S. M. (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 98, 1768-1776, doi: 10.1152/japplphysiol.01027.2004
  8. Assis-Pereira, P. E., Motoyama, Y. L., Esteves, G. J., Quinelato, W. C., Botter, L., Tanaka, K. H. and Azevedo, P. (2016) Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. International Journal of Applied Exercise Physiology, 5(2), 37-43.
  9. (20) Munn, J., Herbert, R. D., Hancock, M. J. and Gandevia, S. C. (2005) Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622-1626, doi: 10.1249/01.mss.0000177583.41245.f8
  10. Gillies, E. M., Putman, C. T., & Bell, G. J. (2006). The effect of varying the time of concentric and eccentric muscle actions during resistance training on skeletal muscle adaptations in women. European journal of applied physiology, 97(4), 443-453.
  11. Farthing, J. P., & Chilibeck, P. D. (2003). The effects of eccentric and concentric training at different velocities on muscle hypertrophy. European journal of applied physiology, 89(6), 578-586.
  12. Hisaeda, H., Nakamura, Y., Kuno, S., Fukunaga, T., & Muraoka, I. (1996). Effect of high-speed resistance training on muscle cross-sectional area and speed of movement. Japanese Journal of Physical Fitness and Sports Medicine, 45(2), 345-355
  13. Young, W. B., & Bilby, G. E. (1993). The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J Strength Cond Res, 7(3), 172-8.
  14. Nogueira, W., Gentil, P., Mello, S. N. M., Bezerra, A. J. C. and Bottaro, M. (2009) Effects of power training on muscle thickness of older men. The International Journal of Sports Medicine, 30, 200-204
  15. Correa, C. S., LaRoche, D. P., Cadore, E. L., Reischak-Oliveira, A., Bottaro, M., Kruel, L. F. M., Tartaruga, M. P., Radaelli, R., Wilhelm, E. N., Lacerda, F. C., Gaya, A. R. and Pinto, R. S. (2012) 3 different types of strength training in older women. International Journal of Sports Medicine, 33, 962-969, doi: 10.1055/s-0032-1312648
  16. Coyle, E. F., Feiring, D. C., Rotkis, T. C., Cote III, R. W., Roby, F. B., Lee, W. and Wilmore, J. H. (1981) Specificity of power improvements through slow and fast isokinetic training. Journal of Applied Physiology, 51(6), 1437-1442
  17. Ewing Jr., J. L., Wolfe, D. R., Rogers, M. A., Amundson, M. L. and Stull, G. A. (1990) Effects of velocity of isokinetic training on strength, power, and quadriceps muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 61, 159-162
  18. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E. and Staron, R. S. (2012) Early-phase muscular adaptations in response to slow-speed versus traditional resistance training regimens. European Journal of Applied Physiology, 112, 3585-3595, doi: 10.1007/s00421-012-2339-3
    • Repetition Range:
  19. (1) Fink, J., Kikuchi, N., Yoshida, S., Terada, K. and Nakazato, K. (2016) Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. SpringerPlus, 5(1), 1-8, doi: 10.1186/s40064-01633-z3-2
  20. Ogasawara, R., Loenneke, J. P., Thiebaud, R. S. and Abe, T. (2013) Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. International Journal of Clinical Medicine, 4, 114-121
  21. Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B. and Sonmez, G. T. (2015) Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength and Conditioning Research, 29(10) 2954-2963
  22. Chestnut, J. L. and Docherty, D. (1999) The effects of 4 and 10 repetition maximum weight-training protocols on neuromuscular adaptations in untrained men. Journal of Strength and Conditioning Research, 13(4), 353-359
  23. Schoenfeld, B. J., Ratamess, N. A., Peterson, M. D., Contreras, B., Sonmez, G. T. and Alvar, B. A. (2014) Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. Journal of Strength and Conditioning, 10(28), 2909-2918
  24. Kraemer, W. J., Nindl, B. C., Ratamess, N. A., Gotshalk, L. A., Volek, J. S., Fleck, S. J., Newton, R. U. and Hakkinen, K. (2004) Changes in muscle hypertrophy in women with periodized resistance training. Medicine and Science in Sports and Exercise, 36(4), 697-708
  25. Jenkins, N. D. M., Miramonti, A. A., Hill, E. C., Smith, C. M., Cochrane-Snyman, K. C., Housh, T. J. and Cramer, J. T. (2017) Greater neural adaptations following high- vs. low-load resistance training. Frontiers in Physiology, 8(331), 1-15, doi: 10.3389/fphys.2017.00331
  26. Tanimoto, M., Sanada, K., Yamamoto, K., Kawano, H., Gando, Y., Tabata, I., Ishii, N. and Miyachi, M. (2008) Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. The Journal of Strength and Conditioning, 22(6), 1926-1938
  27. Van Roie, E., Delecluse, C., Coudyzer, W., Boonen, S. and Bautmans, I. (2013) Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Experimental Gerontology, 48, 1351-1361
  28. Hisaeda, H., Miyagawa, K., Kuno, S., Fukunaga, T. and Muraoka, I. (1996) Influence of two different modes of resistance training in female subjects. Ergonomics, 39(6), 842-852
  29. Bemben, D. A., Fetters, N. L., Bemben, M. G., Nabavi,, N. and Koh, E. T. (2000) Musculoskeletal responses to high- and low-intensity resistance training in early postmenopausal women. Medicine and Science in Sports and Exercise, 32(11), 1949-1957
  30. Lamon, S., Wallace, M. A., Leger, B. and Russell, A. P. (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. Journal of Physiology, 587(8), 1795-1803
  31. (13) Leger, B., Cartoni, R., Praz, M., Lamon, S., Deriaz, O., Crettenand, A., Gobelet, C., Rohmer, P., Konzelmann, M., Luthi, F. and Russell, A. P. (2006) Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of Physiology, 576(3), 923-933, doi: 10.1113/jphysiol.2006.116715
  32. (14) Weiss, L. W., Coney, H. D. and Clark, F. C. (2000) Gross measures of exercise-induced muscular hypertrophy. Journal of Orthopaedic and Sports Physical Therapy. 30(3), 143-148
  33. Tanimoto, M. and Ishii, N. (2006) Effect of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. Journal of Applied Physiology, 100, 1150-1157, doi: 10.1152/japplphysiol.00741.2005
  34. Holm, L., Reitelseder, S., Pedersen, T. G., Doessing, S., Petersen, S. G., Flyvbjerg, A., Andersen, J. L., Aagaard, P. and Kjaer, M. (2008) Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. Journal of Applied Physiology, 105, 1454-1461
  35. Kalapotharakos, V. I., Michalopoulou, M., Godolias, G., Tokmakidis, S. P., Malliou, P. V. and Gourgoulis, V. (2004) The effects of high- and moderate-resistance training on muscle function in the elderly. Journal of Aging and Physical Activity, 11, 131-143
  36. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E. and Staron, R. S. (2012) Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. European Journal of Applied Physiology, 112(10), 3585-595
  37. (19 ) Taaffe, D. R., Pruitt, L., Pyka, G., Guido, D. and Marcus, R. (1996) Comparative effects of high- and low-intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clinical Physiology, 16, 381-392
  38. (20) Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., Baker, S. K. and Phillips, S. M. (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121, 129-138, doi: 10.1152/japplphysiol.00154.2016
  39. Vinogradova, O. L., Popov, D. V., Netreba, A. I., Tsvirkun, D. V., Kurochkina, N. S., Bachinin, A. V., Bravyi, Ya. R., Lyubaeva, E. V., Lysenko, E. A., Miller, T. F., Borovik, A. S., Tarasova, O. S. and Orlov, O. I. (2013) Optimization of training: new developments in safe strength training. Human Physiology, 39(5), 511-523
  40. Mitchell, C. J., Churchward-Venne, T. A., West, D. W. D., Burd, N. A., Breen, L., Baker, S. K. and Phillips, S. M. (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113, 71-77
  41. Netreba, A., Popov, D., Bravyy, Y., Lyubaeva, E., Terada, M., Ohira, T., Okabe, H., Vinogradova, O. and Ohira, Y. (2013) Responses of knee extensor muscles to leg press training of various types in human. Russian Journal of Physiology, 99(3), 406-416
  42. Campos, G. E. R., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., Ragg, K. E., Ratamess, N. A., Kraemer, W. J. and Staron, R. S. (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European Journal of Applied Physiology, 88, 50-60, doi: 10.1007/s00421-0681-6
  43. (25) Dons, B., Bollerup, K., Bonde-Petersen, F. and Hancke, S. (1979) The effect of weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in humans. European Journal of Applied Physiology, 40, 95-106
    • Reps-to-failure/Set
  44. (1) Sampson, J. A., & Groeller, H. (2016). Is repetition failure critical for the development of muscle hypertrophy and strength?. Scandinavian journal of medicine & science in sports26(4), 375-383.
  45. Bergamasco, J. G. A., da Silva, D. G., Bittencourt, D. F., de Oliveira, R. M., Júnior, J. C. B., Caruso, F. R., ... & Libardi, C. A. (2022). Low-load resistance training performed to muscle failure or near muscle failure does not promote additional gains on muscle strength, hypertrophy, and functional performance of older adults. The Journal of Strength & Conditioning Research, 36(5), 1209-1215.
  46. Karsten, B., Fu, Y. L., Larumbe-Zabala, E., Seijo, M., & Naclerio, F. (2021). Impact of Two High-Volume Set Configuration Workouts on Resistance Training Outcomes in Recreationally Trained Men. Journal of strength and conditioning research, 35(Suppl 1), S136–S143. https://doi.org/10.1519/JSC.0000000000003163
  47. Tanimoto, M., & Ishii, N. (2005). Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. Journal of Applied Physiology, 100(4), 1150-1157.
  48. Carroll, K.M.; Bernards, J.R.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; DeWeese, B.H.; Sato, K.; Stone, M.H. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2018, 29, 1–28.
  49. (6) Carroll, K. M., Bazyler, C. D., Bernards, J. R., Taber, C. B., Stuart, C. A., DeWeese, B. H., ... & Stone, M. H. (2019). Skeletal muscle fiber adaptations following resistance training using repetition maximums or relative intensity. Sports, 7(7), 169.
    • Load
  50. (45) Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B., & Sonmez, G. T. (2015). Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength & Conditioning Research, 29(10), 2954-2963.
  51. (46) Chestnut, J. L., & Docherty, D. (1999). The effects of 4 and 10-repetition maximum weight-training protocols on neuromuscular adaptations in untrained men. The Journal of Strength & Conditioning Research, 13(4), 353-359.
  52. (10) Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., ... & Phillips, S. M. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121(1), 129-138.
  53. (15) Tanimoto, M., Sanada, K., Yamamoto, K., Kawano, H., Gando, Y., Tabata, I., ... & Miyachi, M. (2008). Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. The Journal of Strength & Conditioning Research, 22(6), 1926-1938.
  54. (43) Fink, J., Kikuchi, N., Yoshida, S., Terada, K., & Nakazato, K. (2016). Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus, 5(1), 1-8.
  55. (44) Ogasawara, R., Loenneke, J. P., Thiebaud, R. S., & Abe, T. (2013). Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. International Journal of Clinical Medicine, 4(02), 114.
  56. (1) Fink, J., Kikuchi, N., & Nakazato, K. (2016).Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clinical physiology and functional imaging, 38(2), 261-268
  57. (14) Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113(1), 71-77.
  58. (34) Taaffe, D. R., Pruitt, L., Pyka, G., Guido, D., & Marcus, R. (1996). Comparative effects of high‐and low‐intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clinical Physiology, 16(4), 381-392.
  59. (36) Alegre, L. M., Aguado, X., Rojas‐Martín, D., Martín‐García, M., Ara, I., and Csapo, R. (2015). Load‐controlled moderate and high‐intensity resistance training programs provoke similar strength gains in young women. Muscle & Nerve, 51(1), 92-101.
  60. (47) Masuda, K., Choi, J. Y., Shimojo, H., & Katsuta, S. (1999). Maintenance of myoglobin concentration in human skeletal muscle after heavy resistance training. European journal of applied physiology and occupational physiology, 79, 347-352
  61. (11)Popov, D. V., Swirkun, D. V., Netreba, A. I., Tarasova, O. S., Prostova, A. B., Larina, I. M., ... & Vinogradova, O. L. (2006). Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Human Physiology, 32(5), 609-614.
  62. (29) Tanimoto, M., & Ishii, N. (2005). Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. Journal of Applied Physiology, 100(4), 1150-1157.
  63. (39) Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., ... & Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. European Journal of Applied Physiology, 112(10), 3585-3595.
  64. (12) Holm, L., Reitelseder, S., Pedersen, T. G., Doessing, S., Petersen, S. G., Flyvbjerg, A., ... & Kjaer, M. (2008). Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. Journal of Applied Physiology, 105(5), 1454-1461.
  65. (23) Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., ... & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European Journal of Applied Physiology, 88(1), 50-60.
  66. (49) Ratzin Jackson, C. G., Dickinson, A. L., & Ringel, S. P. (1990). Skeletal muscle fiber area alterations in two opposing modes of resistance-exercise training in the same individual. European Journal of Applied Physiology and Occupational Physiology, 6(1), 37-41.
  67. (32) Bemben, D. A., Fetters, N. L., Bemben, M. G., Nabavi, N. I. M. A., and Koh, E. T. (2000). Musculoskeletal responses to high-and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc, 32(11), 1949-1957.
  68. (48) HISAEDA, H., MIYAGAWA, K., KUNO, S. Y., FUKUNAGA, T., & MURAOKA, I. (1996). Influence of two different modes of resistance training in female subjects. Ergonomics, 39(6), 842-852.
  69. (41) Kraemer, W. J., Nindl, B. C., Ratamess, N. A., Gotshalk, L. A., Volek, J. S., Fleck, S. J., ... & Häkkinen, K. (2004). Changes in muscle hypertrophy in women with periodized resistance training. Medicine & Science in Sports & Exercise, 36(4), 697-708.
    • Range of Motion (ROM)
  70. Kubo, K., Ikebukuro, T., & Yata, H. (2019). Effects of squat training with different depths on lower limb muscle volumes. European journal of applied physiology, 119, 1933-1942.
  71. Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European journal of applied physiology, 113, 2133-2142.
  72. Maeo, S., Wu, Y., Huang, M., Sakurai, H., Kusagawa, Y., Sugiyama, T., ... & Isaka, T. (2023). Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. European journal of sport science, 23(7), 1240-1250.
  73. (4) Pedrosa, G. F., Lima, F. V., Schoenfeld, B. J., Lacerda, L. T., Simões, M. G., Pereira, M. R., ... & Chagas, M. H. (2022). Partial range of motion training elicits favorable improvements in muscular adaptations when carried out at long muscle lengths. European journal of sport science, 22(8), 1250-1260.
  74. McMahon, G. E., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. The Journal of Strength & Conditioning Research, 28(1), 245-255.
  75. Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., ... & Hamaoka, T. (2019). Partial range of motion exercise is effective for facilitating muscle hypertrophy and function through sustained intramuscular hypoxia in young trained men. The Journal of Strength & Conditioning Research, 33(5), 1286-1294.
  76. Stasinaki, A. N., Zaras, N., Methenitis, S., Tsitkanou, S., Krase, A., Kavvoura, A., & Terzis, G. (2018). Triceps brachii muscle strength and architectural adaptations with resistance training exercises at short or long fascicle length. Journal of functional morphology and kinesiology, 3(2), 28.
  77. Pinto, R. S., Gomes, N., Radaelli, R., Botton, C. E., Brown, L. E., & Bottaro, M. (2012). Effect of range of motion on muscle strength and thickness. The Journal of Strength & Conditioning Research, 26(8), 2140-2145.
  78. Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P., & Mil-Homens, P. (2018). Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. European journal of applied physiology, 118, 1969-1983.
  79. Panza, P., Vieira, J. G., Campos, Y., Novaes, M., Novaes, J., & Vianna, J. M. (2025). Effects of final partial range of motion vs. full range of motion resistance training on muscle adaptations in physically active young men: a within-subject study. Retos: nuevas tendencias en educación física, deporte y recreación, (62), 388-397.
  80. (11) Wolf, M., Korakakis, P. A., Piñero, A., Mohan, A. E., Hermann, T., Augustin, F., ... & Schoenfeld, B. J. (2025). Lengthened partial repetitions elicit similar muscular adaptations as full range of motion repetitions during resistance training in trained individuals. PeerJ13, e18904.
  81. Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European journal of applied physiology, 113, 2133-2142
  82. (13) Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nunes, J. P., ... & Nakamura, M. (2021). Elbow joint angles in elbow flexor unilateral resistance exercise training determine its effects on muscle strength and thickness of trained and non-trained arms. Frontiers in physiology, 12, 734509.
    • Rest Between Sets
  83. Schoenfeld, B.J., Pope, Z.K., Benik, F.M., Hester, G.M., Sellers, J., Nooner, J.L., Schnaiter, J.A., Bond-Williams, K.E., Carter, A.S., Ross, C.L. and Just, B.L. (2016) Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. Journal of Strength and Conditioning Research, 30(7): 1805-1812
  84. Caha, J. (2021). Changes and Differences in Body Composition and Strength Abilities of Athletes in Fitness and Bodybuilding at Different Intervals of Rest. Studia sportiva15(1), 6-16.
  85. Longo, A. R., Silva-Batista, C., Pedroso, K., de Salles Painelli, V., Lasevicius, T., Schoenfeld, B. J., Aihara, A. Y., Peres, B. A., Tricoli, V. and Teixeira, E. L. (2020) Volume Load Rather Than Resting Interval Influences Muscle Hypertrophy During High-Intensity Resistance Training. The Journal of Strength & Conditioning Research, doi: 10.1519/JSC.0000000000003668.
  86. Ahtiainen, J. P., Pakarinen, A. A., Kraemer, W. J., and Hakkinen, K. (2005). Short vs. long rest periods between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength Conditioning Research, 19 (3), 572-582
  87. Buresh, R., Berg, K. and French, J. (2009) The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. The Journal of Strength & Conditioning Research, 23 (1), 62-71.
  88. Fink, J., Schoenfeld, B., Kikuchi, N. and Nazakato, K. (2016) Acute and long-term responses to different rest intervals in low-load resistance training. International Journal of Sports Medicine, 38 (2), 118-124, doi: 10.1055/s-0042-119204
    • Circuit Training
  89. (1) Wilmore JH, Parr RB, Girandola RN, Ward P, Vodak PA, Barstow TJ, Pipes TV, Romero GT, Leslie P. Physiological alterations consequent to circuit weight training. Med Sci Sports 10: 79–84, 1978.
  90. Marcos-Pardo, P. J., Orquin-Castrillón, F. J., Gea-García, G. M., Menayo-Antúnez, R., González-Gálvez, N., Vale, R. G. D. S., & Martínez-Rodríguez, A. (2019). Effects of a moderate-to-high intensity resistance circuit training on fat mass, functional capacity, muscular strength, and quality of life in elderly: A randomized controlled trial. Scientific reports9(1), 1-12.
  91. Harber, M. P., Fry, A. C., Rubin, M. R., Smith, J. C., & Weiss, L. W. (2004). Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scandinavian journal of medicine & science in sports14(3), 176-185
  92. Batrakoulis, A., Jamurtas, A. Z., Georgakouli, K., Draganidis, D., Deli, C. K., Papanikolaou, K., ... & Fatouros, I. G. (2018). High intensity, circuit-type integrated neuromuscular training alters energy balance and reduces body mass and fat in obese women: A 10-month training-detraining randomized controlled trial. PLoS One, 13(8), e0202390.
  93. (5) Sperlich, B., Wallmann-Sperlich, B., Zinner, C., Von Stauffenberg, V., Losert, H., & Holmberg, H. C. (2017). Functional high-intensity circuit training improves body composition, peak oxygen uptake, strength, and alters certain dimensions of quality of life in overweight women. Frontiers in physiology, 8, 172.
  94. Balachandran, A., Krawczyk, S. N., Potiaumpai, M., & Signorile, J. F. (2014). High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial. Experimental gerontology60, 64-71.
  95. Alcaraz, P. E., Perez-Gomez, J., Chavarrias, M., & Blazevich, A. J. (2011). Similarity in adaptations to high-resistance circuit vs. traditional strength training in resistance-trained men. The Journal of Strength & Conditioning Research, 25(9), 2519-2527.circuit training compared traditional Strength
  96. Camargo, M. D., Stein, R., Ribeiro, J. P., Schvartzman, P. R., Rizzatti, M. O., & Schaan, B. D. (2008). Circuit weight training and cardiac morphology: a trial with magnetic resonance imaging. British journal of sports medicine42(2), 141-145.
  97. Gettman, L. R., Ayres, J. J., Pollock, M. L., Durstine, J. L., & Grantham, W. (1979). Physiologic effects on adult men of circuit strength training and jogging. Archives of physical medicine and rehabilitation60(3), 115-120.
  98. (10) Ramos-Campo, D. J., Martínez-Guardado, I., Rubio-Arias, J. A., Freitas, T. T., Othalawa, S., Andreu, L., ... & Alcaraz, P. E. (2021). Muscle architecture and neuromuscular changes after high-resistance circuit training in hypoxia. Journal of Strength and Conditioning Research35(11), 3035-3040.
  99. Martínez-Guardado, I., Ramos-Campo, D. J., Olcina, G. J., Rubio-Arias, J. A., Chung, L. H., Marín-Cascales, E., ... & Timón, R. (2019). Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. European Journal of Sport Science19(7), 941-951.
  100. (12) Hermassi, S., Wollny, R., Schwesig, R., Shephard, R. J., & Chelly, M. S. (2019). Effects of in-season circuit training on physical abilities in male handball players. The Journal of Strength & Conditioning Research33(4), 944-957.
  101. Marx JO, Ratamess NA, Nindl BC, Gotshalk LA, Volek JS, Dohi K, Bush JA, Gomez AL, Mazzetti SA, Fleck SJ, Hakkinen K, Newton RU, Kraemer WJ. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc 33: 635–643, 2001.
    • Set Strategies
  102. Pringga, G. A., Andriana, R. M., Wardhani, I. L., & Arfianti, L. (2021). Original Research Comparison of Hamstrings and Quadriceps Femoris Muscle Thickness Increment between Agonist-Antagonist Paired Set and Traditional Set Resistance Training in Untrained Healthy Subjects.
  103. Merrigan, J. J., Jones, M. T., & White, J. B. (2019). A Comparison of compound set and traditional set resistance training in women: Changes in muscle strength, endurance, quantity, and architecture. Journal of Science in Sport and Exercise, 1, 264-272.
  104. Fink, J., Schoenfeld, B. J., Sakamaki-Sunaga, M., & Nakazato, K. (2021). Physiological Responses to Agonist–A Yuniana, R., Tomoliyus, B. M., Nasrulloh, A., Pratama, K. W., Rosly, M. M., Karakauki, M., & Ali, S. K. S. (2023). The effectiveness of the weight training method and rest interval on VO2 max, flexibility, muscle strength, muscular endurance, and fat percentage in students. Journal of Human Movement and Sports Sciences, 11(1), 213-223. ntagonist Superset Resistance Training. Journal of Science in Sport and Exercise, 3, 355-363.
  105. Yuniana, R., Tomoliyus, B. M., Nasrulloh, A., Pratama, K. W., Rosly, M. M., Karakauki, M., & Ali, S. K. S. (2023). The effectiveness of the weight training method and rest interval on VO2 max, flexibility, muscle strength, muscular endurance, and fat percentage in students. Journal of Human Movement and Sports Sciences, 11(1), 213-223.
  106. Demirtaş, B., Çetin, O., Çakır, E., & Beyleroğlu, M. (2022). The effect of three different sets method used in resistance training on hypertrophy and maximal strength changes. Physical Education of Students, 26(6), 270-279.
  107. Razmjou, S., Rajabi, H., Jannati, M., Azizi, M., & Jahandideh, A. A. (2010). The effects of Delorme and oxford techniques on serum cell injury indices and growth factor in untrained women. World Journal of Sport Sciences, 3(1), 44-52.
  108. Rasekh, M., & Shabani, R. (2021). The comparison of the effect of double and flat pyramid training methods on hypertrophy and muscular strength of male power-lifters. Physical Education of Students, 25(2), 92-97.
  109. Sayyah, A., Asghari, E., & Arazi, H. (2021). The effects of two loading patterns of resistance training (skewed pyramid & reverse step) on some physical and physiological capabilities of non-athlete men. Turkish Journal of Kinesiology, 7(4), 123-131.
  110. Tekeoğlu, İ., Kara, M., GÖKSOY, T., ADAK, B., & AYDINLIOĞLU, A. (1998). Effects of Oxford and De-Lorme exercises on quadriceps muscle. Eastern Journal of Medicine, 3(2), 51-53.
  111. Vilaça-Alves, J., Brito, J. P., Machado, B., Canário-Lemos, R., Moreira, T., Matos, F., ... & Reis, V. M. (2023). Drop Set versus Traditional Strength Training Protocols Equated in Volume on Muscle Thickness in Women.
  112. Fink, J., Schoenfeld, B. J., Kikuchi, N., & Nakazato, K. (2018). Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J Sports Med Phys Fitness, 58(5), 597-605.
  113. Fisher, J. P., Carlson, L., & Steele, J. (2016). The effects of breakdown set resistance training on muscular performance and body composition in young men and women. The Journal of Strength & Conditioning Research, 30(5), 1425-1432.
  114. Fasihiyan, M., Forbes, S., Taheri, M., Lopez, J. G., Babaie, M., Dejam, B., & Nourshahi, M. (2023). The effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition. Scientific Journal of Sport and Performance, 2(3), 410-422.
  115. Enes, A., Alves, R. C., Schoenfeld, B. J., Oneda, G., Perin, S. C., Trindade, T. B., ... & Souza-Junior, T. P. (2021). Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared with traditional sets in resistance-trained males. Applied Physiology, Nutrition, and Metabolism, 46(11), 1417-1424.
    • Sets Per Muscle Group
  116. Munn, J., Herbert, R. D., Hancock, M. J. and Gandevia, S. C. (2005) Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622-1626
  117. McBride, J. M., Blaak, J. B., & Triplett-McBride, T. (2003). Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition. European journal of applied physiology90(5), 626-632
  118. Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of applied physiology113(1), 71-77.
  119. Starkey, D. B., Pollock, M. L., Ishida, Y., Welsch, M. A., Brechue, W. F., Graves, J. E., & Feigenbaum, M. S. (1996). Effect of resistance training volume on strength and muscle thickness. Medicine and science in sports and exercise, 28(0), 10.
  120. Correa Barcelos, L., Nunes, P. R. P., de Souza, L. R. M. F., de Oliveira, A. A., Furlanetto, R., Marocolo, M. and Orsatti, F. L. (2015) Low-load resistance training promotes muscular adaptations regardless of vascular occlusion, load, or volume. European Journal of Applied Physiology, doi: 10.1007/s00421-015-3141-9
  121. Nunes, P. R. P, Barcelos, L. C., Oliveira, A. A., Furlanetto Jr., R., Martins, F. M., Resende, E. A. M. R. and Orsatti, F. L. (2019) Muscular strength adaptations and hormonal responses after two different multiple-set protocols of resistance training in postmenopausal women. Journal of Strength and Conditioning Research, 33(5), 1276-1285
  122. Cunha, P. M., Nunes, J. P., Tomeleri, C. M., Nascimento, M. A., Schoenfeld, B. J., Antunes, M., Gobbo, L. A. Teixeira, D. and Cyrino, E. S. (2020) Resistance training performed with single and multiple sets induces similar improvements in muscular strength, muscle mass, muscle quality, and IGF-1 in older women: a randomized controlled trial. Journal of Strength and Conditioning Research, 34(4), 1008-1016.
  123. Radaelli, R., Fleck, S. J., Leite, T., Leite, R. D., Pinto, R. S., Fernandes, L., & Simão, R. (2015). Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. The Journal of Strength & Conditioning Research, 29(5), 1349-1358.
  124. Hammarstrom, D., Ofsteng, S., Koll, L., Hanestadhaugen, M., Hollan, I., Apro, W., Whist, J. E., Ronnestad, B. R. and Ellefsen, S. (2020) Benefits of higher resistance-training volume are related to ribosome biogensis. Journal of Physiology, 543-565, doi: 10.1101/666347
  125. Sooneste, H., Tanimoto, M., Kakigi, R., Saga, N., & Katamoto, S. (2013). Effects of training volume on strength and hypertrophy in young men. The Journal of Strength & Conditioning Research, 27(1), 8-13.
  126. Heaselgrave, S. R., Blacker, J., Smeuninx, B., McKendry, J. and Breen, L. (2019) Dose-response relationship of weekly resistance-training volume and frequency on muscular adaptations in trained men. International Journal of Sports Physiology and Performance, 14, 360-368, doi: 10.1123/ijspp.2018-0427
  127. Brigatto, F. A., de Medeiros Lima, E., Germano, M. D., Aoki, M. S., Braz, T. V. and Lopes, C. R. (2022) High resistance-training volume enhances muscle thickness in resistance-trained men. Journal of Strength and Conditioning Research, 36(1), 22-30
  128. Schoenfeld, B. J., Contreras, B., Krieger, J., Grgic, J., Delcastillo, K., Belliard, R. and Alto, A. (2019) Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine and Science in Sports and Exercise, 51(1), 94-103
  129. Marzolini, S., Oh, P. I., Thomas, S. G. and Goodman, J. M. (2008) Aerobic and resistance training in coronary disease: single versus multiple sets. Medicine and Science in Sports and Exercise, 40(9), 1557-1564
  130. Radaelli, R., Wilhelm, E. N., Botton, C. E., Bottaro, M., Cadore, E. L., Brown, L. E., & Pinto, R. S. (2013). Effect of two different strength training volumes on muscle hypertrophy and quality in elderly women. J Sports Med Phys Fitness53(Suppl. 1 to No. 3), 6-11.
  131. Radaelli, R., Botton, C. E., Wilhelm, E. N., Bottaro, M., Lacerda, F., Gaya, A., ... & Pinto, R. S. (2013). Low-and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Experimental gerontology48(8), 710-716.
  132. Radaelli, R., Botton, C. E., Wilhelm, E. N., Bottaro, M., Brown, L. E., Lacerda, F., ... & Pinto, R. S. (2014). Time course of low-and high-volume strength training on neuromuscular adaptations and muscle quality in older women. Age, 36(2), 881-892.
  133. Radaelli, R., Wilhelm, E. N., Botton, C. E., Rech, A., Bottaro, M., Brown, L. E., & Pinto, R. S. (2014). Effects of single vs. multiple-set short-term strength training in elderly women. Age, 36(6), 1-11.
  134. Kraemer, W. J., Ratamess, N., Fry, A. C., Triplett-McBride, T., Koziris, L. P., Bauer, J. A., Lynch, J. M. and Fleck, S. J. (2000) Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. The American Journal of Sports Medicine, 28(5), 626-633.
  135. Rønnestad, B. R., Egeland, W., Kvamme, N. H., Refsnes, P. E., Kadi, F., & Raastad, T. (2007). Dissimilar effects of one-and three-set strength training on strength and muscle mass gains in upper and lower body in untrained subjects. The Journal of Strength & Conditioning Research21(1), 157-163
  136. Hanssen, K. E., Kvamme, N. H., Nilsen, T. S., Ronnestad, B., Ambjornsen, I. K., Norheim, F., Kadi, F., Hallen, J., Drevon, C. A. and Raastad, T. (2012) The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scandinavian Journal of Medicine and Science in Sports, doi: 10.1111/j31600-0838.2012.01452.x
  137. Bottaro, M., Veloso, J., Wagner, D., & Gentil, P. (2011). Resistance training for strength and muscle thickness: Effect of number of sets and muscle group trained. Science & Sports26(5), 259-264.
  138. Paulsen, G., Myklestad, D. and Raastad, T. (2003) The influence of volume of exercise on early adaptations to strength training. Journal of Strength and Conditioning Research, 17(1), 115-120
    • Training Frequency
  139. Stec, M. J., Thalacker-Mercer, A., Mayhew, D. L., Kelly, N. A., Tuggle, S. C., Merritt, E. K., Brown, C. J., Windham, S. T., Dell'Italia, L. J., Bickel, C. S., Roberts, B. M., Vaughn, K. M., Isakova-Donahue, I., Many, G. M. and Bamman, M. M. (2017) Randomized, four-arm, dose-response clinical trial to optimize resistance exercise training for older adults with age-related muscle atrophy. Experimental Gerontology, 99, 98-109
  140. Hortobágyi, T., Houmard, J., Fraser, D., Dudek, R., Lambert, J., & Tracy, J. (1998). Normal forces and myofibrillar disruption after repeated eccentric exercise. Journal of Applied Physiology, 84(2), 492-498.
  141. Carroll, T. J., Abernethy, P. J., Logan, P. A., Barber, M. and McEniery, M. T. (1998) Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. European Journal of Applied Physiology, 78, 270-275
  142. Macaluso, F., Isaacs, A. W., & Myburgh, K. H. (2012). Preferential type II muscle fiber damage from plyometric exercise. Journal of athletic training, 47(4), 414-420.
  143. Walker, S., Serrano, J., van Roie, E. (2018). Maximum dynamic lower-limb strength was maintained during 24-week reduced training frequency in previously sedentary older women. The Journal of Strength & Conditioning Research, 32(4), 1063-1071.
  144. Nascimento, M. A. D., Gerage, A. M., da Silva, D. R. P., Ribeiro, A. S., da Silva Machado, D. G., Pina, F. L. C. P., Tomeleri, C. M., Venturini, D., Barbosa, D. S., Mayhew, J. L. and Cyrino, E. S. (2018) Effect of resistance training with different frequencies and subsequent detraining on muscle mass and appendicular lean soft tissue, IGF-1, and testosterone in older women. European Journal of Sport Science, doi: 10.1080-17461391.2018.1496145
  145. Ribeiro, A. S., Nascimento, M. A., Schoenfeld, B. J., Nunes, J. P., Aguiar, A. F., Cavalcante, E. F., Silva, A. M., Sardinha, L. B., Fleck, S. J. and Cyrino, E. S. (2018) Effects of single set resistance training with different frequencies on a cellular health indicator in older women. Journal of Aging and Physical Activity, 26, 537-543
  146. Pina, F. L. C., Nunes, J. P., Nascimento, M. A., Ribeiro, A. S., Mayhew, J. L. and Cyrino, E. S. (2019) Similar effects of 24 weeks of resistance training performed with different frequencies on muscle strength, muscle mass, and muscle quality in older women. International Journal of Exercise Science, 12(6), 623-635.
  147. Taaffe, D. R., Duret, C., Wheeler, S. and Marcus, R. (1999) Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. Journal of the American Geriatrics Society, 47 (10), 1208-1214
  148. Murlasits, Z., Reed, J. and Wells, K. (2012) Effect of resistance training frequency on physiological adaptations in older adults. Journal of Exercise Science & Fitness, 10, 28-32
  149. Carneiro, N. H., Ribeiro, A. S., Nascimento, M. A., Gobbo, L. A., Schoenfeld, B. J., Junior, A. A., Gobbi, S., Oliveira, A. R. and Cyrino, E. S. (2015) Effects of different resistance training frequencies on flexibility in older women. Clinical Interventions in Aging, 10, 531-538
  150. Miller, R. M., Bemben, D. A., & Bemben, M. G. (2021). The influence of sex, training intensity, and frequency on muscular adaptations to 40 weeks of resistance exercise in older adults. Experimental Gerontology143doi: 10.1016/j.exger.2020.111174
  151. Ferrari, R., Kruel, L. F. M., Cadore, E. L., Alberton, C. L., Izquierdo, M., Conceicao, M., Pinto, R. S., Radaelli, R., Wilhelm, E., Bottaro, M., Ribeiro, J. P. and Umpierre, D. (2013) Efficiency of twice weekly concurrent training in trained elderly men. Experimental Gerontology, 48(11), 1236-1242
  152. Pieczynska, A., Zasadzka, E., Trzmiel, T., Pyda, M. and Pawlaczyk, M. (2021) The effect of mixed circuit of aerobic and resistance training on body composition in older adults - retrospective study. International Journal of Environmental Research and Public Health, 18, doi: 10.3390/ijerph18115608
  153. Richardson, D. L., Duncan, M. J., Jimenez-Gutierrez, A., Juris, P. M. and Clarke, N. D (2019) Effects of movement velocity and training frequency of resistance exercise on functional performance in older adults: a randomised controlled trial. European Journal of Sport Science, 19(2), 234-246.
  154. Fernandez-Lezaun, E., Schumann, M., Makinen, T., Kyrolainen, H. and Walker, S. (2017) Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Experimental Gerontology, 95, 44-53, doi: 10.1016/j.exger.2017.05.012
  155. McLESTER, J. R., Bishop, E., & Guilliams, M. E. (2000). Comparison of 1 day and 3 days per week of equal-volume resistance training in experienced subjects. The Journal of Strength & Conditioning Research, 14(3), 273-281.
  156. Hunter, G. R. (1985) Changes in body composition, body build and performance associated with different weight training frequencies in males and females. NSCA Journal, 26-28
  157. Benton, M. J., Kasper, M. J., Raab, S. A., Waggener, G. T., & Swan, P. D. (2011). Short-term effects of resistance training frequency on body composition and strength in middle-aged women. The Journal of Strength & Conditioning Research, 25(11), 3142-3149.
  158. Colquhoun, R. J., Gai, C. M., Aguilar, D., Bove, D., Dolan, J., Vargas, A., Couvillion, K., Jenkins, N. D. M. and Campbell, B. I. (2018) Training volume, not frequency, indicative of maximal strength adaptations to resistance training. Journal of Strength and Conditioning Research, 32(5), 1207-1213
  159. Calder, A. W., Chilibeck, P. D., Webber, C. E., & Sale, D. G. (1994). Comparison of whole and split weight training routines in young women. Canadian Journal of Applied Physiology, 19(2), 185-199.
  160. Yue, F. L., Karsten, B., Larumbe-Zabala, E., Seijo, M. and Naclerio, F. (2018) Comparison of 2 weekly-equalized volume resistance-training routines using different frequencies on body composition and performance in trained males. Applied Physiology, Nutrition and Metabolism, 43, 475-481
  161. Gentil, P., Fischer, B., Martorelli, A. S., Lima, R. M., & Bottaro, M. (2015). Effects of equal-volume resistance training performed one or two times a week in upper body muscle size and strength of untrained young men. J Sports Med Phys Fitness, 55(3), 144-9.
  162. Gentil, P., Fisher, J., Steele, J., Campos, M. H., Silva, M. H., Paoli, A., Giessing, J. and Bottaro, M. (2018) Effects of equal-volume resistance training with different training frequencies in muscle size and strength in trained men. PeerJ, 6:e5020; doi: 10.7717/peerj.5020
  163. Tavares, L. D., de Souza, E. O., Ugrinowitsch, C., Laurentino, G. C., Roschel, H., Aihara, A. Y., Cardoso, F. N. and Tricoli, V. (2017) Effects of different strength training frequencies during reduced training period on strength and muscle cross-sectional area. European Journal of Sport Science, doi: 10.1080/17461391.2017.1298673
  164. Heaselgrave, S. R., Blacker, J., Smeuninx, B., McKendry, J. and Breen, L. (2019) Dose-response relationship of weekly resistance-training volume and frequency on muscular adaptations in trained men. International Journal of Sports Physiology and Performance, 14, 360-368
  165. Brigatto, F. A., Braz, T. V., da Costa Zanini, T. C., Germano, M. D., Aoki, M. S., Schoenfeld, B. J., Marchetti, P. H. and Lopes, C. R. (2018) Effect of resistance training frequency on neuromuscular performance and muscle morphology after eight weeks in trained men. Journal of Strength and Conditioning Research, doi: 10.1519/JSC.0000000000002563
  166. Thomas, M. H. and Burns, S. P. (2016) Increasing lean mass and strength: a comparison of high-frequency strength training to lower frequency strength training. International Journal of Exercise Science, 9(2), 159-167
  167. Ochi, E., Maruo, M., Tsuchiya, Y., Ishii, N., Miura, K. and Sasaki, K. (2018) Higher training frequency is important for gaining muscular strength under volume-matched training. Frontiers in Physiology, 9(744), doi: 10.3389/fphys.2018.00744
  168. Brigatto, F. A., de Camargo, J. B. B., Machado, Y. B., Germano, M. D., Aoki, M. S., Braz, T. V., & Lopes, C. R. (2022). Does Split-Body Resistance Training Routine Performed Two Versus Three Days Per Week Induce Distinct Strength and Morphological Adaptations in Resistance-Trained Men? A Randomized Longitudinal Study. International Journal of Strength and Conditioning, 2(1), doi: 10.47206/ijsc.v2i1.96
  169. Candow, D. G., & Burke, D. G. (2007). Effect of short-term equal-volume resistance training with different workout frequency on muscle mass and strength in untrained men and women. The Journal of Strength & Conditioning Research, 21(1), 204-207.
  170. Schoenfeld, B. J., Ratamess, N. A., Peterson, M. D., Contreras, B. and Tiryaki-Sonmez, G. (2015) Influence of resistance training frequency on muscular adaptations in well-trained men. Journal of Strength and Conditioning Research, 29(7), 1821-1829
  171. Arazi, H., Asadi, A., Gentil, P., Ramirez-Campillo, R., Jahangiri, P., Ghorbani, A., Hackney, A. C. and Zouhal, H. (2021) Effects of different resistance training frequencies on body composition and muscular performance adaptations in men. PeerJ 9:e10537, doi: 10.7717/peerj.10537
  172. Bartolomei, S., Nigro, F., Lanzoni, I. M., Masina, F., Di Michele, R., & Hoffman, J. R. (2021). A comparison between total body and split routine resistance training programs in trained men. The Journal of Strength & Conditioning Research, 35(6), 1520-1526.
  173. Saric, J., Lisica, D., Orlic, I., Grgic, J., Krieger, J. W., Vuk, S. and Schoenfeld, B. J. (2018) Resistance training frequencies of 3 and 6 times per week produce similar muscular adaptations in resistance-trained men. Journal of Strength and Conditioning Research, 33, S122-S129
  174. (67) Colquhoun, R. J., Gai, C. M., Aguilar, D., Bove, D., Dolan, J., Vargas, A., Couvillion, K., Jenkins, N. D. M. and Campbell, B. I. (2018) Training volume, not frequency, indicative of maximal strength adaptations to resistance training. Journal of Strength and Conditioning Research, 32(5), 1207-1213
  175. Firoozi, H., Arazi, H. and Asadi, A. (2020) Effects of resistance training program on muscular performance adaptations: comparing three vs. four times per week. Biomedical Human Kinetics, 12, 149-156, doi: 10.2478/bhk-2020-0019Kraemer, W. J. (1997) A series of studies - the physiological basis for strength training in American football: fact over philosophy. Journal of Strength and Conditioning Research, 11(3), 131-142
    • Periodization
  176. (87) Oliver, J. M., Abt, J. P., Sell, T. C., Beals, K., Wood, D. E., & Lephart, S M. (2015). Salivary hormone response to 12-week block-periodized training in naval special warfare operators. Journal of Strength and Conditioning Research, 29(1), 66-73
  177. (20) Abt, J. P., Oliver, J. M., Nagai, T., Sell, T. C., Lovalekar, M. T., Beals, K., ... & Lephart, S. M. (2016). Block-periodized training improves physiological and tactically relevant performance in Naval Special Warfare Operators. The Journal of Strength & Conditioning Research, 30(1), 39-52.
  178. (21) Schiotz, M. K., Potteiger, J. A., Huntsinger, P. G., & Denmark, L. C. D. C. (1998). The short-term effects of periodized and constant-intensity training on body composition, strength, and performance. The Journal of Strength & Conditioning Research, 12(3), 173-178.
  179. (22) Heilbronn, B. E., Doma, K., Gormann, D., Schumann, M., & Sinclair, W. H. (2020). Effects of periodized vs. nonperiodized resistance training on army-specific fitness and skills performance. The Journal of Strength & Conditioning Research, 34(3), 738-753.
  180. (88) Borges Silva, F., Martínez Rodríguez, A., Jiménez Reyes, P., Sánchez Sánchez, J., & Romero Arenas, S. (2023). Which periodization is better (traditional vs undulating) to induce changes in body composition and strength of healthy young adults?. Cultura_Ciencia_Deporte [CCD], 17(54).
  181. (3) Kraemer, W. J., Hakkinen, K., Triplett-McBride, N. T., Fry, A. C., Koziris, L. P., Ratamess, N. A., ... & Knuttgen, H. G. (2003). Physiological changes with periodized resistance training in women tennis players. Medicine and science in sports and exercise, 35(1), 157-168.
  182. (26) Soares, W. F., Soares, V. L., Zanetti, H. R., Neves, F. F., Silva-Vergara, M. L., & Mendes, E. L. (2022). Effects of two different exercise training programs periodization on anthropometric and functional parameters in people living with HIV: a randomized clinical trial. International Journal of Exercise Science, 15(3), 733.
  183. (27) Antretter, M., Färber, S., Immler, L., Perktold, M., Posch, D., Raschner, C., Wachholz, F., & Burtscher, M. (2017) The hatfield-system versus the weekly undulating periodised resistance training in trained males. International Journal of Sports Science & Coaching, 0(0), 1-9. doi: 10.1177/1747954117746457
  184. (28) Antretter, M., Färber, S., Immler, L., Perktold, M., Posch, D., Raschner, C., ... & Burtscher, M. (2019). The Hatfield-System versus the Weekly Undulating Periodised Resistance Training in trained males: Effects of a third mesocyle. Journal of Human Sport and Exercise, 14(3), 599-607
  185. (30) Ghobadi, H., Attarzadeh Hosseini, S. R., Rashidlamir, A., & Forbes, S. C. (2022). Auto-regulatory progressive training compared to linear programming on muscular strength, endurance, and body composition in recreationally active males. European Journal of Sport Science, 22(10), 1543-1554.
  186. (7) Ghobadi, H., Attarzadeh Hosseini, S. R., Rashidlamir, A., & Mohammad Rahimi, G. R. (2024). Anabolic myokine responses and muscular performance following 8 weeks of autoregulated compared to linear resistance exercise in recreationally active males. Hormones, 1-10.
  187. (15) Vanni, A. C., Meyer, F., Da Veiga, A. D. R., & Zanardo, V. P. S. (2010). Comparison of the effects of two resistance training regimens on muscular and bone responses in premenopausal women. Osteoporosis International, 21, 1537-1544.
  188. (55) Simão, R., Spineti, J., de Salles, B. F., Matta, T., Fernandes, L., Fleck, S. J., ... & Strom-Olsen, H. E. (2012). Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. The Journal of strength & conditioning research, 26(5), 1389-1395.
  189. (39) Kok, L. Y., Hamer, P. W., & Bishop, D. J. (2009). Enhancing muscular qualities in untrained women: linear versus undulating periodization. Medicine & Science in Sports & Exercise, 41(9), 1797-1807.
  190. (40) Harries, S. K., Lubans, D. R., & Callister, R. (2016). Comparison of resistance training progression models on maximal strength in sub-elite adolescent rugby union players. Journal of Science and Medicine in Sport, 19(2), 163-169.
  191. (46) Ullrich, B., Pelzer, T., & Pfeiffer, M. (2018). Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. The Journal of Strength & Conditioning Research, 32(3), 660-674.
  192. (50) Rhea, M. R., Ball, S. D., Phillips, W. T., & Burkett, L. N. (2002). A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. The Journal of strength & conditioning research, 16(2), 250-255.
  193. (54) Ramalingam, S., & Yee, K. (2013). Comparison of linear and daily undulating periodization with equated volume and intensity for muscular endurance in adolescent athletes. Asian Journal of Exercise & Sports Science, 10(2), 36-48.
  194. (57) De Souza, E. O., Tricoli, V., Rauch, J., Alvarez, M. R., Laurentino, G., Aihara, A. Y., ... & Ugrinowitsch, C. (2018). Different patterns in muscular strength and hypertrophy adaptations in untrained individuals undergoing nonperiodized and periodized strength regimens. The journal of strength & conditioning research, 32(5), 1238-1244.
  195. (89) Spineti, J., Figueiredo, T., Salles, B. F. D., Assis, M., Fernandes, L., Novaes, J., & Simão, R. (2013). Comparison between different periodization models on muscular strength and thickness in a muscle group increasing sequence. Revista Brasileira de Medicina do Esporte, 19, 280-286.
  196. (34) Bartolomei, S., Hoffman, J. R., Merni, F., & Stout, J. R. (2014). A comparison of traditional and block periodized strength training programs in trained athletes. The Journal of Strength & Conditioning Research, 28(4), 990-997.
  197. (35) Bartolomei, S., Stout, J. R., Fukuda, D. H., Hoffman, J. R., & Merni, F. (2015). Block vs. weekly undulating periodized resistance training programs in women. The Journal of Strength & Conditioning Research, 29(10), 2679-2687.
  198. (6) Bartolomei, S., Hoffman, J. R., Stout, J. R., Zini, M., Stefanelli, C., & Merni, F. (2016). Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. Kinesiology, 48(1.), 71-78.
  199. (31) De Lima, C., Boullosa, D. A., Frollini, A. B., Donatto, F. F., Leite, R. D., Gonelli, P. R. G., ... & Cesar, M. C. (2012). Linear and daily undulating resistance training periodizations have differential beneficial effects in young sedentary women. International journal of sports medicine, 723-727.
  200. (27) Antretter, M., Färber, S., Immler, L., Perktold, M., Posch, D., Raschner, C., Wachholz, F., & Burtscher, M. (2017) The hatfield-system versus the weekly undulating periodised resistance training in trained males. International Journal of Sports Science & Coaching, 0(0), 1-9. doi: 10.1177/1747954117746457
  201. (41) Painter, K. B., Haff, G. G., Ramsey, M. W., McBride, J., Triplett, T., Sands, W. A., ... & Stone, M. H. (2012). Strength gains: Block versus daily undulating periodization weight training among track and field athletes. International journal of sports physiology and performance, 7(2), 161-169.
  202. (6) Bartolomei, S., Hoffman, J. R., Stout, J. R., Zini, M., Stefanelli, C., & Merni, F. (2016). Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. Kinesiology, 48(1.), 71-78.
  203. (44) Peterson, M. D., Dodd, D. J., Alvar, B. A., Rhea, M. R., & Favre, M. (2008). Undulation training for development of hierarchical fitness and improved firefighter job performance. The Journal of Strength & Conditioning Research, 22(5), 1683-1695.
  204. (16) Franchini, E., Branco, B. M., Agostinho, M. F., Calmet, M., & Candau, R. (2015). Influence of linear and undulating strength periodization on physical fitness, physiological, and performance responses to simulated judo matches. The Journal of Strength & Conditioning Research, 29(2), 358-367.
  205. (67) Prestes, J., De Lima, C., Frollini, A. B., Donatto, F. F., & Conte, M. (2009). Comparison of linear and reverse linear periodization effects on maximal strength and body composition. The Journal of strength & conditioning research, 23(1), 266-274.
  206. (69) Rhea, M. R., Phillips, W. T., Burkett, L. N., Stone, W. J., Ball, S. D., Alvar, B. A., & Thomas, A. B. (2003). A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. The Journal of Strength & Conditioning Research, 17(1), 82-87.
  207. (65) Colquhoun, R. J., Gai, C. M., Walters, J., Brannon, A. R., Kilpatrick, M. W., D'Agostino, D. P., & Campbell, W. I. (2017). Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. The Journal of Strength & Conditioning Research, 31(2), 283-291.
  208. (90) Rodrigues, J. A., Santos, B. C., Medeiros, L. H., Gonçalves, T. C., & Júnior, C. R. (2021). Effects of different periodization strategies of combined aerobic and strength training on heart rate variability in older women. The Journal of Strength & Conditioning Research, 35(7), 2033-2039.
  209. (79) Helms, E. R., Byrnes, R. K., Cooke, D. M., Haischer, M. H., Carzoli, J. P., Johnson, T. K., ... & Zourdos, M. C. (2018). RPE vs. percentage 1RM loading in periodized programs matched for sets and repetitions. Frontiers in physiology, 9, 247.
  210. (80) Graham, T., & Cleather, D. J. (2021). Autoregulation by “repetitions in reserve” leads to greater improvements in strength over a 12-week training program than fixed loading. The Journal of Strength & Conditioning Research, 35(9), 2451-2456.
  211. (66) Peixoto, D. L., DE CASTRO, B. M., Macedo, A. G., Urtado, C. B., Lima, P. S., Leite, R. D., ... & Prestes, J. (2022). Muscle Daily Undulating Periodization for Strength and Body Composition: The Proposal of a New Model. International Journal of Exercise Science, 15(4), 206.
  212. (58) STONE, M. H., Potteiger, J. A., Pierce, K. C., Proulx, C. M., O'bryant, H. S., Johnson, R. L., & Stone, M. E. (2000). Comparison of the effects of three different weight-training programs on the one-repetition maximum squat. The Journal of Strength & Conditioning Research, 14(3), 332-337.
  213. (59) Hoffman, J. R., Ratamess, N. A., Klatt, M., Faigenbaum, A. D., Ross, R. E., Tranchina, N. M., ... & Kraemer, W. J. (2009). Comparison between different off-season resistance training programs in Division III American college football players. The Journal of Strength & Conditioning Research, 23(1), 11-19.
  214. (56) Souza, E. O., Ugrinowitsch, C., Tricoli, V., Roschel, H., Lowery, R. P., Aihara, A. Y., ... & Wilson, J. M. (2014). Early adaptations to six weeks of non-periodized and periodized strength training regimens in recreational males. Journal of sports science & medicine, 13(3), 604.
  215. (60) Monteiro, A. G., Aoki, M. S., Evangelista, A. L., Alveno, D. A., Monteiro, G. A., da Cruz Piçarro, I., & Ugrinowitsch, C. (2009). Nonlinear periodization maximizes strength gains in split resistance training routines. The Journal of Strength & Conditioning Research, 23(4), 1321-1326.
  216. (61) Buford, T. W., Rossi, S. J., Smith, D. B., & Warren, A. J. (2007). A comparison of periodization models during nine weeks with equated volume and intensity for strength. The Journal of Strength & Conditioning Research, 21(4), 1245-1250.
  217. (69) Rhea, M. R., Phillips, W. T., Burkett, L. N., Stone, W. J., Ball, S. D., Alvar, B. A., & Thomas, A. B. (2003). A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. The Journal of Strength & Conditioning Research, 17(1), 82-87.
  218. (11) Bertazone, T. M. A., Medeiros, L. H. D. L., Oliveira, C. I. D., Bueno Junior, C. R., & Stabile, A. M. (2022). Periodized combined training in physically active overweight women over 50 years. Motriz: Revista de Educação Física, 28, e10220009721.
  219. (12) Foschini, D., Araújo, R. C., Bacurau, R. F., De Piano, A., De Almeida, S. S., Carnier, J., ... & Dâmaso, A. R. (2010). Treatment of obese adolescents: the influence of periodization models and ACE genotype. Obesity, 18(4), 766-772.
  220. (13) Inoue, D. S., De Mello, M. T., Foschini, D., Lira, F. S., Ganen, A. D. P., Campos, R. M. D. S., ... & Dâmaso, A. R. (2015). Linear and undulating periodized strength plus aerobic training promote similar benefits and lead to improvement of insulin resistance on obese adolescents. Journal of Diabetes and its Complications, 29(2), 258-264.
  221. (8) Mahmoud, N., Mohammadreza, H. A., Abdolhosein, T. K., Mehdi, N., & Arent, S. M. (2022). Serum myokine levels after linear and flexible non-linear periodized resistance training in overweight sedentary women. European journal of sport science, 22(4), 658-668.
  222. (83) Vargas-Molina, S., Petro, J. L., Romance, R., Bonilla, D. A., Schoenfeld, B. J., Kreider, R. B., & Benítez-Porres, J. (2022). Menstrual cycle-based undulating periodized program effects on body composition and strength in trained women: A pilot study. Science & Sports, 37(8), 753-761.
  223. (70) Macedo, R. M. D., Macedo, A. C. B. D., Faria-Neto, J. R., Costantini, C. R., Costantini, C. O., Olandoski, M., ... & Guarita-Souza, L. C. (2018). Superior cardiovascular effect of the periodized model for prescribed exercises as compared to the conventional one in coronary diseases. International Journal of Cardiovascular Sciences, 31, 393-404.
  224. (71) De Freitas, M. C., de Souza Pereira, C. G., Batista, V. C., Rossi, F. E., Ribeiro, A. S., Cyrino, E. S., ... & Gobbo, L. A. (2019). Effects of linear versus nonperiodized resistance training on isometric force and skeletal muscle mass adaptations in sarcopenic older adults. Journal of Exercise Rehabilitation, 15(1), 148.
  225. (74) de Souza Bezerra, E., da Rosa Orssatto, L. B., De Moura, B. M., Willardson, J. M., Simão, R., & Moro, A. R. P. (2018). Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. The Journal of Strength & Conditioning Research, 32(10), 2795-2806.
  226. (78) Vargas-Molina, S., García-Sillero, M., Romance, R., Petro, J. L., Jiménez-García, J. D., Bonilla, D. A., ... & Benítez-Porres, J. (2022). Traditional and undulating periodization on body composition, strength levels and physical fitness in older adults. International Journal of Environmental Research and Public Health, 19(8), 4522.
  227. (72) Moura, B. M., Bezerra, E. D. S., Orssatto, L. B., Moro, A. R. P., & Diefenthaeler, F. (2021). Inter-individual rapid force improvements after mixed session and traditional periodization in aging adults: A randomized trial. Journal of Science in Sport and Exercise, 3, 125-137.
  228. (10) Conlon, J., Haff, G., Tufano, J. J., & Newton, R. (2016). Periodization strategies in older adults: impact on physical function and health. Medicine and Science in Sports and Exercise, 48(12), 2426. doi: 10.1249/MSS.0000000000001053
    • Exercise Order
  229. (used above) Simão, R., Spineti, J., de Salles, B. F., Oliveira, L. F., Matta, T., Miranda, F., ... & Costa, P. B. (2010). Influence of exercise order on maximum strength and muscle thickness in untrained men. Journal of sports science & medicine, 9(1), 1.
  230. (used above) Spineti, J., De Salles, B. F., Rhea, M. R., Lavigne, D., Matta, T., Miranda, F., ... & Simão, R. (2010). Influence of exercise order on maximum strength and muscle volume in nonlinear periodized resistance training. The Journal of Strength & Conditioning Research, 24(11), 2962-2969.
  231. (used above) Fisher, J. P., Carlson, L., Steele, J., & Smith, D. (2014). The effects of pre-exhaustion, exercise order, and rest intervals in a full-body resistance training intervention. Applied Physiology, Nutrition, and Metabolism, 39(11), 1265-1270.
  232. Avelar, A., Ribeiro, A. S., Nunes, J. P., Schoenfeld, B. J., Papst, R. R., Trindade, M. C. C., … Cyrino, E. S. (2019). Effects of order of resistance training exercises on muscle hypertrophy in young adult men. Applied Physiology Nutrition and Metabolism, 44(open in a new window)(4(open in a new window)), 420– doi: 10.1139/apnm-2018-0478
  233. (used above) Keskin, K., Gogus, F. N., Gunay, M., & Fujita, R. A. (2024). Equated volume load: similar improvements in muscle strength, endurance, and hypertrophy for traditional, pre-exhaustion, and drop sets in resistance training. Sport Sciences for Health, 1-10.
  234. (used above) Gentil, P., Soares, S., & Bottaro, M. (2015). Single vs. multi-joint resistance exercises: effects on muscle strength and hypertrophy. Asian journal of sports medicine, 6(2).
  235. (Used above) Brandão, L., de Salles Painelli, V., Lasevicius, T., Silva-Batista, C., Brendon, H., Schoenfeld, B. J., ... & Teixeira, E. L. (2020). Varying the order of combinations of single-and multi-joint exercises differentially affects resistance training adaptations. The Journal of Strength & Conditioning Research, 34(5), 1254-1263.
  236. (used above) Fisher, J. P., Carlson, L., Steele, J., & Smith, D. (2014). The effects of pre-exhaustion, exercise order, and rest intervals in a full-body resistance training intervention. Applied Physiology, Nutrition, and Metabolism39(11), 1265-1270.
  237. Trindade, T. B., Prestes, J., Neto, L. O., Medeiros, R. M. V., Tibana, R. A., de Sousa, N. M. F., ... & Dantas, P. M. S. (2019). Effects of pre-exhaustion versus traditional resistance training on training volume, maximal strength, and quadriceps hypertrophy. Frontiers in Physiology, 10, 1424.
    • Chest Exercise Progressions
  238. Trebs, A. A., Brandenburg, J. P., & Pitney, W. A. (2010). An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of a chest press exercise at several angles. The Journal of Strength & Conditioning Research, 24(7), 1925-1930.
  239. Christian, J. R., Gothart, S. E., Graham, H. K., Barganier, K. D., & Whitehead, P. N. (2023). Analysis of the Activation of Upper-Extremity Muscles During Various Chest Press Modalities. The Journal of Strength & Conditioning Research, 37(2), 265-269.
  240. Ferreira, D. V., Ferreira-Júnior, J. B., Soares, S. R., Cadore, E. L., Izquierdo, M., Brown, L. E., & Bottaro, M. (2017). Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance-trained men. The Journal of Strength & Conditioning Research, 31(1), 71-79.
  241. Izquierdo, Lee E., and Martim Bottaro. "CHEST PRESS EXERCISES WITH DIFFERENT STABILITY REQUIREMENTS RESULT IN SIMILAR MUSCLE DAMAGE RECOVERY IN RESISTANCE TRAINED MEN." (2016).
  242. Cacchio, A., Don, R., Ranavolo, A., Guerra, E., McCaw, S. T., Procaccianti, R., ... & Santilli, V. (2008). Effects of 8-week strength training with two models of chest press machines on muscular activity pattern and strength. Journal of Electromyography and Kinesiology, 18(4), 618-627.
  243. Uribe, B. P., Coburn, J. W., Brown, L. E., Judelson, D. A., Khamoui, A. V., & Nguyen, D. (2010). Muscle activation when performing the chest press and shoulder press on a stable bench vs. a Swiss ball. The Journal of Strength & Conditioning Research, 24(4), 1028-1033.
  244. Goodman, C. A., Pearce, A. J., Nicholes, C. J., Gatt, B. M., & Fairweather, I. H. (2008). No difference in 1 RM load strength and muscle activation during the barbell chest press on a stable and unstable surface. The Journal of Strength & Conditioning Research, 22(1), 88-94.
  245. Marshall, P. W., & Murphy, B. A. (2006). Increased deltoid and abdominal muscle activity during stability ball bench press. The Journal of Strength & Conditioning Research, 20(4), 745-750.
  246. Lehman, G. J., Gordon, T., Langley, J., Pemrose, P., & Tregaskis, S. (2005). Replacing a stability ball for an exercise bench causes variable changes in trunk muscle activity during upper limb strength exercises. Dynamic Medicine, 4, 1-7.
  247. Norwood, J. T., Anderson, G. S., Gaetz, M. B., & Twist, P. W. (2007). Electromyographic activity of the trunk stabilizers during stable and unstable bench press. The Journal of Strength & Conditioning Research, 21(2), 343-347.
  248. Saeterbakken, A. H., & Fimland, M. S. (2013). Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. The Journal of Strength & Conditioning Research, 27(4), 1101-1107
  249. Saeterbakken, A. H., Andersen, V., van den Tillaar, R., Joly, F., Stien, N., Pedersen, H., ... & Solstad, T. E. J. (2020). The effects of ten weeks resistance training on sticking region in chest-press exercises. PLoS One, 15(7), e0235555.
  250. Campbell, B. M., Kutz, M. R., Morgan, A. L., Fullenkamp, A. M., & Ballenger, R. (2014). An evaluation of upper-body muscle activation during coupled and uncoupled instability resistance training. The Journal of Strength & Conditioning Research, 28(7), 1833-1838.
  251. Dunnick, D. D., Brown, L. E., Coburn, J. W., Lynn, S. K., & Barillas, S. R. (2015). Bench press upper-body muscle activation between stable and unstable loads. The Journal of Strength & Conditioning Research, 29(12), 3279-3283.
  252. Lawrence, M. A., Leib, D. J., Ostrowski, S. J., & Carlson, L. A. (2017). Nonlinear analysis of an unstable bench press bar path and muscle activation. The Journal of Strength & Conditioning Research, 31(5), 1206-1211.
  253. Ostrowski, S. J., Carlson, L. A., & Lawrence, M. A. (2017). Effect of an unstable load on primary and stabilizing muscles during the bench press. The Journal of Strength & Conditioning Research, 31(2), 430-434.
  254. Lawrence, M. A., Ostrowski, S. J., Leib, D. J., & Carlson, L. A. (2021). Effect of unstable loads on stabilizing muscles and bar motion during the bench press. The Journal of Strength & Conditioning Research, 35, S120-S126.
  255. Harris, S., Ruffin, E., Brewer, W., & Ortiz, A. (2017). Muscle activation patterns during suspension training exercises. International journal of sports physical therapy, 12(1), 42.
  256. Beach, T. A., Howarth, S. J., & Callaghan, J. P. (2008). Muscular contribution to low-back loading and stiffness during standard and suspended push-ups. Human Movement Science, 27(3), 457-472.
  257. Maeo, S., Chou, T., Yamamoto, M., & Kanehisa, H. (2014). Muscular activities during sling-and ground-based push-up exercise. BMC research notes, 7, 1-7.
  258. Borreani, S., Calatayud, J., Colado, J. C., Moya-Nájera, D., Triplett, N. T., & Martin, F. (2015). Muscle activation during push-ups performed under stable and unstable conditions. Journal of Exercise Science & Fitness, 13(2), 94-98.
  259. McGill, S. M., Cannon, J., & Andersen, J. T. (2014). Analysis of pushing exercises: Muscle activity and spine load while contrasting techniques on stable surfaces with a labile suspension strap training system. The Journal of Strength & Conditioning Research, 28(1), 105-116.
  260. Gioftsos, G., Arvanitidis, M., Tsimouris, D., Kanellopoulos, A., Paras, G., Trigkas, P., & Sakellari, V. (2016). EMG activity of the serratus anterior and trapezius muscles during the different phases of the push-up plus exercise on different support surfaces and different hand positions. Journal of Physical Therapy Science, 28(7), 2114-2118.
  261. Seo, S. H., Jeon, I. H., Cho, Y. H., Lee, H. G., Hwang, Y. T., & Jang, J. H. (2013). Surface EMG during the push-up plus exercise on a stable support or Swiss ball: scapular stabilizer muscle exercise. Journal of physical therapy science, 25(7), 833-837.
  262. Lehman, G. J., MacMillan, B., MacIntyre, I., Chivers, M., & Fluter, M. (2006). Shoulder muscle EMG activity during push up variations on and off a Swiss ball. Dynamic Medicine, 5, 1-7.
  263. Lehman, G. J., Gilas, D., & Patel, U. (2008). An unstable support surface does not increase scapulothoracic stabilizing muscle activity during push up and push up plus exercises. Manual therapy, 13(6), 500-506.
  264. Park, S. Y., & Yoo, W. G. (2011). Differential activation of parts of the serratus anterior muscle during push-up variations on stable and unstable bases of support. Journal of Electromyography and Kinesiology, 21(5), 861-867.
    • Back Exercise Progressions
  265. García-Jaén, M., Sanchis-Soler, G., Carrión-Adán, A., & Cortell-Tormo, J. M. (2021). Electromyographical responses of the lumbar, dorsal and shoulder musculature during the bent-over row exercise: a comparison between standing and bench postures (a preliminary study).
  266. Youdas, J. W., Kleis, M., Krueger, E. T., Thompson, S., Walker, W. A., & Hollman, J. H. (2021). Recruitment of shoulder complex and torso stabilizer muscles with rowing exercises using a suspension strap training system. Sports Health, 13(1), 85-90.
  267. Fenwick, C. M., Brown, S. H., & McGill, S. M. (2009). Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness. The Journal of Strength & Conditioning Research, 23(5), 1408-1417.
  268. de Abreu Vasconcelos, C. M. W., Lopes, C. R., Almeida, V. M., Neto, W. K., & Soares, E. (2023). Effect Of Different Grip Position And Shoulder-Abduction Angle On Muscle Strength And Activation During The Seated Cable Row. International Journal of Strength and Conditioning, 3(1).
  269. Youdas, J. W., Hubble, J. W., Johnson, P. G., McCarthy, M. M., Saenz, M. M., & Hollman, J. H. (2020). Scapular muscle balance and spinal stabilizer recruitment during an inverted row. Physiotherapy theory and practice, 36(3), 432-443.Harris, S., Ruffin, E., Brewer, W. and Ortiz, A. (2017) Muscle activation patterns during suspension training exercises. International Journal of Sports Physical Therapy, 12(1), 42-52.
  270. Snarr, R. L., & Esco, M. R. (2013). Comparison of electromyographic activity when performing an inverted row with and without a suspension device. Age (yrs), 26(4.2), 22-3.
  271. Snarr, R., Nickerson, B., & Esco, M. (2014). Effects of hand-grip during the inverted row with and without a suspension device: An electromyographical investigation. Euro J Sports Exerc Sci, 3, 1-5.
  272. McGill, S. M., Cannon, J., & Andersen, J. T. (2014). Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching. Journal of Electromyography and Kinesiology, 24(5), 652-665.
  273. Lehman, G. J., Buchan, D. D., Lundy, A., Myers, N., & Nalborczyk, A. (2004). Variations in muscle activation levels during traditional latissimus dorsi weight training exercises: An experimental study. Dynamic Medicine, 3, 1-5.
  274. Doma, K., Deakin, G. B., & Ness, K. F. (2013). Kinematic and electromyographic comparisons between chin-ups and lat-pull down exercises. Sports biomechanics12(3), 302–313. https://doi.org/10.1080/14763141.2012.760204
  275. Park, S. Y., & Yoo, W. G. (2013). Selective activation of the latissimus dorsi and the inferior fibers of trapezius at various shoulder angles during isometric pull-down exertion. Journal of Electromyography and Kinesiology, 23(6), 1350-1355.
  276. Signorile, J. E., Zink, A. J., & Szwed, S. P. (2002). A comparative electromyographical investigation of muscle utilization patterns using various hand positions during the lat pull-down. The Journal of Strength & Conditioning Research, 16(4), 539-546.
  277. Padovan, R., Toninelli, N., Longo, S., Tornatore, G., Esposito, F., Cè, E., & Coratella, G. (2024). High-density electromyography excitation in front vs. back lat pull-down prime movers. Journal of Human Kinetics, 91(Spec Issue), 47.
  278. Sperandei, S., Barros, M. A., Silveira-Júnior, P. C., & Oliveira, C. G. (2009). Electromyographic analysis of three different types of lat pull-down. The Journal of Strength & Conditioning Research, 23(7), 2033-2038.
  279. Lusk, S. J., Hale, B. D., & Russell, D. M. (2010). Grip width and forearm orientation effects on muscle activity during the lat pull-down. The Journal of Strength & Conditioning Research, 24(7), 1895-1900.
  280. Andersen, V., Fimland, M. S., Wiik, E., Skoglund, A., & Saeterbakken, A. H. (2014). Effects of grip width on muscle strength and activation in the lat pull-down. The Journal of Strength & Conditioning Research, 28(4), 1135-1142.
  281. Raizada, S., & Bagchi, A. (2019). A comparative electromyographical investigation of Latissimus dorsi and Biceps brachii using Various hand positions in pull ups. Indian J Public Health, 10, 1625.
  282. Snarr, R. L., Hallmark, A. V., Casey, J. C., & Esco, M. R. (2017). Electromyographical comparison of a traditional, suspension device, and towel pull-up. Journal of Human Kinetics, 58, 5.
  283. Williamson, T., & Price, P. D. (2021). A comparison of muscle activity between strict, kipping and butterfly pull-ups. The Journal of Sport and Exercise Science, 5(2), 149-155.Cueing and Coaching (and 11)
  284. Snyder, B. J., & Leech, J. R. (2009). Voluntary increase in latissimus dorsi muscle activity during the lat pull-down following expert instruction. The Journal of Strength & Conditioning Research, 23(8), 2204-2209
    • Shoulder Exercise Progressions
  285. Saeterbakken, A. H., & Fimland, M. S. (2013). Effects of body position and loading modality on muscle activity and strength in shoulder presses. The Journal of Strength & Conditioning Research, 27(7), 1824-1831.
  286. Lehman, G. J., Gordon, T., Langley, J., Pemrose, P. and Tregaskis, S. (2005) Replacing a Swiss ball for an exercise bench causes variable changes in trunk muscle activity during limb strength exercises. Dynamic Medicine, 4(6), doi: 10.1186/1476-5918-4-6
  287. Kohler, J. M., Flanagan, S. P., & Whiting, W. C. (2010). Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. The Journal of Strength & Conditioning Research, 24(2), 313-321.
  288. Behm, D. G., Leonard, A. M., Young, W. B., Bonsey, W. A. C., & MacKinnon, S. N. (2005). Trunk muscle electromyographic activity with unstable and unilateral exercises. The Journal of Strength & Conditioning Research, 19(1), 193-201.
  289. Williams Jr, M. R., Hendricks, D. S., Dannen, M. J., Arnold, A. M., & Lawrence, M. A. (2020). Activity of shoulder stabilizers and prime movers during an unstable overhead press. The Journal of Strength & Conditioning Research, 34(1), 73-78.
  290. Baritello, O., Khajooei, M., Engel, T., Kopinski, S., Quarmby, A., Mueller, S., & Mayer, F. (2020). Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass. BMC Sports Science, Medicine and Rehabilitation, 12, 1-14.
  291. Sweeney, S. P. (2014). Electromyographic analysis of the deltoid muscle during various shoulder exercises (Doctoral dissertation).
  292. Keogh, J. W., Aickin, S. E., & Oldham, A. R. (2010). Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?. The Journal of Strength & Conditioning Research, 24(2), 422-429.
    • Leg Exercise Progressions
  293. Park, J. K., Lee, D. Y., Kim, J. S., Hong, J. H., You, J. H. and Park, I. M. (2015) Effects of visibility and types of the ground surface on the muscle activities of the vastus medialis oblique and vastus lateralis. Journal of Physical Therapy Sciences, 27, 2435-2437
  294. Han, D., Nam, S., Song, J., Lee, W. and Kang, T. (2017) The effect of knee flexion angles and ground conditions on the muscle activation of the lower extremity in the squat position. The Journal of Physical Therapy Science, 29, 1852-1855.
  295. Li, Y., Cao, C. and Chen, X. (2013) Similar electromyographic activities of lower limbs between squatting on a reebok core board and ground. Journal of Strength and Conditioning Research, 27(5), 1349-1353
  296. Andersen, V., Fimland, M. S., Brennset, O., Haslestad, L. R., Lundteigen, M. S., Skalleberg, K. and Saeterbakken, A. H. (2014) Muscle activation and strength in squat and Bulgarian squat on stable and unstable surface. Sports Medicine, 35, 1196-1202
  297. Saeterbakken, A. H. and Fimland, M. S. (2013) Muscle force output and electromyographic activity in squats with various unstable surfaces. The Journal of Strength and Conditioning Research, 27(1), 130-136
  298. Lawrence, M. A. and Carlson, L. A. (2015) Effects of an unstable load on force and muscle activation during a parallel back squat. Journal of Strength and Conditioning, 29(10), 2949-2953
  299. Ditroilo, M., O'Sullivan, R., Harnan, B., Crossey, A., Gillmor, B., Dardis, W. and Grainger, A. (2018) Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat. Journal of Sports Sciences, 36(17), 2002-2008
  300. Stuart, M. J., Meglan, D. A., Lutz, G. E., Growney, E. S. and An, K. N. (1996) Comparison of intersegmental tibiofemoral joint forces and muscle acdtivity during various closed kinetic chain exercises. The American Journal of Sports Medicine, 24(6), 792-799
  301. DeForest, B. A., Cantrell, G. S. and Schilling, B. K. (2014) Muscle activity in single- vs. double-leg squats. International Journal of Exercise Science, 7(4), 302-310
  302. Jones, M. T., Ambegaonkar, J. P., Nindl, B. C., Smith, J. A. and Headley, S. A. (2012) Effects of unilateral and bilateral lower-body heavy resistance exercise on muscle activity and testosterone responses. The Journal of Strength and Conditioning Research, 26(4), 1094-1100
  303. McCurdy, K., O'Kelley, E., Kutz, M., Langford, G., Ernest, J. and Torres, M. (2010) Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. Journal of Sport Rehabilitation, 19, 57-70
  304. McCurdy, K., Walker, J. and Yuen, D. Gluteus maximus and hamstring activation during selected weight-bearing resistance exercises. Journal of Strength and Conditioning Research,
  305. Lubahn, A. J., Kernozek, T. W., Tyson, T. L., Merkitch, K. W., Reutemann, P. and Chestnut, J. M. (2011) Hip muscle activation and knee frontal plane motion during weight bearing therapeutic exercises. The International Journal of Sports Physical Therapy, 6(2), 92-103
  306. Eliassen, W., Saeterbakken, A. H. and van den Tillaar, R. (2018) Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. The International Journal of Sports Physical Therapy, 13(5), 871-881
  307. Krause, D. A., Elliott, J. J., Fraboni, D. F., McWilliams, T. J., Rebhan, R. L. and Hollman, J. H. (2018) Electromyography of the hip and thigh muscles during two variations of the lunge exercise: a cross-sectional study. The International Journal of Sports Physical Therapy, 13(2), 137-14
  308. Krause, D. A., Jacobs, R. S., Pilger, K. E., Sather, B. R., Sibunka, S. P. and Hollman, J. H. (2009) Electromyographic analysis of the gluteus medius in five weight-bearing exercises. Journal of Strength and Conditioning Research, 23(9), 2689-2694.
  309. DiStefano, L. J., Blackburn, J. T., Marshall, S. W. and Padua, D. A. (2009) Gluteal muscle activation during common therapeutic exercises. Journal of Orthopaedic and Sports Physical Therapy, 39(7), 532-540
  310. Boren, K., Conrey, C., Le Coguic, J., Paprocki, L., Voight, M. and Robinson, T. K. (2011) Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. The International Journal of Sports Physical Therapy, 6(3), 206-223
  311. Begalle, R. L., DiStefano, L. J., Blackburn, T. and Padua, D. A. (2012) Quadriceps and hamstrings coactivation during common therapeutic exercises. Journal of Athletic Training, 47(4), 396-405
    • Power Exercise and Hypertrophy
  312. Zaras, N., Spengos, K., Methenitis, S., Papadopoulos, C., Karampatsos, G., Georgiadis, G., … & Terzis, G. (2013). Effects of strength vs. ballistic-power training on throwing performance. Journal of sports science & medicine, 12(1), 130.
  313. Lamas, L., Aoki, M. S., Ugrinowitsch, C., Campos, G. E. R., Regazzini, M., Moriscot, A. S., & Tricoli, V. (2010). Expression of genes related to muscle plasticity after strength and power training regimens. Scandinavian journal of medicine & science in sports, 20(2), 216-225.

© 2025 Brookbush Institute. All rights reserved.

Comments

Guest