Facebook Pixel
Brookbush Institute Logo
Endurance Training: Evidence-based Model
Endurance Training: Evidence-based Model

Endurance Training: Evidence-based Model

Muscular endurance, often labeled “strength endurance,” is a common goal in resistance training, yet most endurance-training models rely heavily on expert opinion, mechanistic hypotheses, or incomplete readings of the literature. This is the first comprehensively evidence-based model.

Test Critical Content

Mark As Complete

Course Summary: Endurance Training

Introduction:

Evidence-based endurance training recommendations:

This course was developed to answer a simple but surprisingly unsettled question: What does the total body of research actually say about training for muscular endurance (often labeled “strength endurance”)? Rather than relying on expert opinion, mechanistic hypotheses, or trending “guru” beliefs, this course integrates hundreds of peer-reviewed and published studies to develop evidence-based, best-practice recommendations. You will not learn “one magic protocol.” Instead, you will learn how acute variable ranges influence endurance outcomes, and why the most effective recommendation often depends on what load and task you are trying to endure. Our systematic review demonstrates that many programs will “work”; however, “slightly better” options for each acute variable likely add up to significantly better outcomes over months and years.

Throughout the course, we emphasize outcomes over mechanisms. Mechanistic hypotheses (e.g., fiber type shifts, capillary density, metabolite accumulation, buffering capacity, or hormonal signaling) can be useful for generating ideas, but they are only valuable if they lead to recommendations that improve measurable endurance outcomes. Wherever possible, we base recommendations on studies that directly compare practical programming decisions: lighter versus heavier loads, high versus moderate repetition ranges, sets taken to failure versus reps in reserve, short versus long rest intervals, conventional versus circuit formats, single versus multiple sets, drop sets versus traditional set structures, and periodized versus non-periodized routines. We also address a central nuance that is often ignored in endurance discussions: endurance is likely load-specific, and potentially exercise-specific. If the goal is more repetitions with a given load, training must include exposure to that load, not just “higher reps” in general.

We also highlight research that does not support popular trends. For example, we address oversold concepts such as endurance days defined solely by very light loads and short rest, rigid block periodization as a default, rest prescriptions based only on “endurance goals,” and volume targets that exceed recoverable capacity. We also address why some commonly promoted strategies add complexity without reliably improving outcomes, and why certain “endurance phases” may be unnecessary for many trainees when more efficient strategies, such as appropriately applied drop sets and goal-specific loading, can produce equal or superior endurance adaptations.

By the end of this course, you will be able to:

  • Understand how each modifiable acute variable influences endurance outcomes, and when endurance recommendations should be goal- and load-specific.
  • Build programs that place most training time in optimal acute variable ranges (e.g., controlled eccentrics with maximal voluntary concentric contractions, high effort sets taken to or near failure, light to moderate loads for many endurance tests, sufficient rest to preserve performance across sets, and a progressive increase from 1–5 sets per muscle group per session).
  • Decide when to integrate advanced strategies, such as drop sets, circuit training for efficiency, undulating structures across light, moderate, and intermittent heavier days, and strategically using reps in reserve to manage fatigue in athletes or higher-frequency training.
  • Evaluate existing endurance programs, identify which recommendations are optimal or suboptimal for the goal and testing demands, and systematically adjust variables to improve expected value (reliability × effect size) for a given client, patient, or athlete.

This course is designed for professionals who already understand some basics of resistance training but want to align their endurance programming with the most complete and accurate endurance model available. You will learn not only what to do but also become aware of the research that supports each recommendation, and how to adapt this model to real-world constraints, preferences, and goals.

Downgrading Endurance Training

It is not entirely inaccurate to argue that “strength endurance” is not a distinct training goal. Although certain physiological adaptations can increase fatigue resistance and the ability to sustain force production, evidence suggests that endurance adaptations are load- and velocity-specific, and potentially exercise-specific. “Strength endurance” is often defined as the ability to lift submaximal loads for more repetitions; however, due to the specificity of adaptation, strength endurance cannot be narrowly defined as only performing lighter loads for more repetitions. A more accurate definition may consider “strength” and “endurance” on a continuum of shared acute variables adjusted to match the client’s goal.

Practically, if the goal is to perform more repetitions with a heavy load, training must include attempts to increase repetitions at that load. Increasing maximal strength can contribute to endurance, but optimizing performance with lighter loads requires dedicating some training time to improving repetition performance with those lighter loads. For example, if the goal is to increase bench press performance from 7 reps/set at 225 lb to 12 reps/set at 225 lb, performing sets of 155 lb for 15-20 repetitions is unlikely to result in significant improvements at 225lb. Furthermore, if the goal is to perform 155 for 20 reps/set, it is unlikely that training with 7-10 reps/set at 225 will yield optimal outcomes.

Because of the issues discussed above, this model is not entirely distinct from the evidence-based strength training model .

Last, 3 research findings may imply that "endurance training" as a phase or day should be deprioritized. Namely, strength endurance is not necessarily more beneficial for aerobic endurance athletes; endurance is likely load-specific, and drop sets (starting with heavier loads) may be more effective for improving endurance than conventional sets.

Three research findings that should temper an emphasis on endurance training

  1. Strength endurance and aerobic performance: Repetition range appears to have minimal influence on the aerobic benefits derived from strength training (33–35).
  2. Load specificity: Endurance is likely specific to both load and exercise. When endurance is assessed using repetitions to failure with light loads, lighter load training and higher repetitions typically produce the greatest improvements. Conversely, training primarily with heavy loads and fewer repetitions may reduce reps/set with light loads. If the goal is more repetitions with heavy loads, then heavy-load training with reps-to-failure/set is likely the best approach.
  3. Drop sets: Drop sets may be an appropriate progression for advanced exercisers who benefit from higher training volumes, for example, individuals already performing three or more conventional sets per muscle group. Drop sets have been shown to increase endurance, potentially to a greater extent than traditional set configurations. For many individuals, performing drop-sets regularly may reduce the need for separate “endurance-focused” work.

Frequently Asked Questions (FAQs)

What is strength endurance?

  • Strength endurance (often called muscular endurance) is the ability to sustain repeated contractions, typically measured as repetitions to failure at a submaximal load, or maintaining force or torque output over time.

What is the difference between muscular endurance and strength endurance?

  • In practice, these terms are usually used interchangeably. In this course, we use “strength endurance” to emphasize that endurance adaptations are expressed during resistance-training tasks and are influenced by the same acute variables that govern strength and hypertrophy, particularly load, repetitions, rest, and proximity to failure.

How do you increase muscular endurance?

  • Muscular endurance improves most reliably when training includes (1) sufficient exposure to the load and exercise pattern you want to improve, and (2) repeated sets taken to or near failure, while keeping weekly volume within recoverable limits. This is consistent with position stand guidance that endurance responds well to lighter loads and higher repetitions, but the course additionally emphasizes load specificity, meaning you improve what you practice.

What rep range is best for strength endurance?

  • Most general guidelines define endurance training as high repetition work (commonly 15+ reps per set), typically with lighter loads. For programming, this course emphasizes that the “best” rep range depends on the load you are trying to endure. If your goal is 12 reps at a heavier submaximal load, training must include meaningful time at that heavier load, not only very high rep sets.

What weight should I lift for strength endurance?

  • A common evidence-based recommendation is light to moderate loading (often cited around 40–60% of 1RM) performed for high repetitions (15+), especially when the goal is local muscular endurance at lighter loads. If your goal is endurance at a heavier load (e.g., increasing reps at 80% 1RM), the model recommends goal-specific loading to ensure that adaptations transfer to that test.

Should I train to failure for muscular endurance?

  • For local muscular endurance outcomes measured as repetitions to failure, high effort sets taken to or near failure are often the most direct way to drive the specific adaptation you are testing. Your model also discusses situations in which leaving 1 to 2 reps in reserve may be appropriate (e.g., for athletes, in high-frequency training, or when fatigue management is the limiting factor).

How long should I rest between sets for strength endurance?

  • A long rest of 3 minutes or more is necessary to optimize set performance (force, time under tension, reps/set). Although many professional organizations have recommended short rest periods for endurance, shorter rest periods result in significant performance declines from set to set.

Are drop sets effective for improving muscular endurance?

  • Drop sets are an efficient way to extend a set past initial fatigue and accumulate more total repetitions near failure in a short amount of time, and research suggests they can improve muscular endurance measures (for example, repetitions to failure at submaximal loads), sometimes to a greater extent than conventional set structures. In this model, drop sets are recommended as a progression for experienced exercisers, and when applied strategically they may reduce the need for separate endurance focused training days.

Pre-approved Credits for:

Pre-approved for Continuing Education Credits for:

This course includes:

  • AI Tutor
  • Course Summary Webinar
  • Study Guide
  • Text and Illustrations
  • Audio Voice-over
  • Research Review
  • Sample Routine
  • Practice Exam
  • Pre-approved 3 Credit Final Exam

Acute Variable Courses:

Course Study Guide: Endurance Training: Evidence-based Model

Endurance Training: Webinar

Preface: The First Comprehensively Evidence-based Endurance Training Model

Endurance Training Model: Acute Variables and Programming
3 Sub Sections

Summary of Research Findings

Research Findings: Acute Variables
13 Sub Sections

Sample Programs
2 Sub Sections

Bibliography

Bibliography

Tempo

  1. Marzilger, R., Bohm, S., Mersmann, F. and Arampatzis, A. (2019) Effects of lengthening velocity during eccentric training on vastus lateralis muscle hypertrophy. Frontiers in Physiology, 10(957), doi: 10.3389/fphys.2019.00957
  2. Pereira, M. I. R., & Gomes, P. S. C. (2007). Effects of isotonic resistance training at two movement velocities on strength gains. Revista Brasileira de Medicina do Esporte, 13(2), 91-96.
  3. Usui, S., Maeo, S., Tayashiki, K., Nakatani, M. and Kanehisa (2015) Low-load slow movement squat training increases muscle size and strength but not power. The International Journal of Sports Medicine, 37(4), 305-312, doi: 10.1055/s-0035-1564255
  4. Assis-Pereira, P. E., Motoyama, Y. L., Esteves, G. J., Quinelato, W. C., Botter, L., Tanaka, K. H. and Azevedo, P. (2016) Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. International Journal of Applied Exercise Physiology, 5(2), 37-43.
  5. Munn, J., Herbert, R. D., Hancock, M. J. and Gandevia, S. C. (2005) Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622-1626, doi: 10.1249/01.mss.0000177583.41245.f8
  6. Gonzalez-Badillo, J. J., Rodriguez-Rosell, D., Sanchez-Medina, L., Gorostiaga, E. M. and Pareja-Blanco, F. (2014) Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. European Journal of Sport Science, 14(8), 772-781, doi: 10.1080/17461391.2014.905987
  7. Young, W. B. and Bilby, G. E. (1993) The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. Journal of Strength and Conditioning Research, 7(3), 172-178
  8. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Kushnick, M. R., Staron, R. S. and Toma, K. (2008) Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. Journal of Strength and Conditioning Research, 22(1), 119-127.
  9. Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Gorostiaga, E. M. and Gonzalez-Badillo, J. J. (2014) Effect of movement velocity during resistance training on neuromuscular performance. The International Journal of Sports Medicine, doi: 10.1055/s-0033-1363985
  10. Jones, K., Hunter, G., FLEISIG, G., Escamilla, R., & Lemak, L. (1999). The effects of compensatory acceleration on upper-body strength and power in collegiate football players. The Journal of Strength & Conditioning Research, 13(2), 99-105.
  11. Marsh, A. P., Miller, M. E., Rejeski, J., Hutton, S. L. and Kritchevsky, S. B. (2009) Lower extremity muscle function after strength or power training in older adults. Journal of Aging and Physical Activity, 17, 416-443
  12. Fielding, R. A., LeBrasseur, N. K., Cuaco, A., Bean, J., Mizer, K. and Fiatarone Singh, M. A. (2002) High-velocity resistance training increases skeletal muscle peak power in older women. Journal of the American Geriatrics Socieity, 50(4), 655-662
  13. Bottaro, M., Machado, S. N., Nogueira, W., Scales, R. and Veloso, J. (2007) Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. European Journal of Applied Physiology, 99, 257-264, doi: 10.1007/s00421-006-0343-1
  14. Balachandran, A., Krawczyk, S. N., Potiaumpai, M. and Signorile, J. F. (2014) High-speed circuit training vs hypertrophy training to improve physical function in sacropenic obese adults: a randomized controlled trial. Experimental Gerontology, 60, 64-71, doi: 10.1016/j.exger.2014.09.01
  15. Ramirez-Campillo, R., Castillo, A., de la Fuente, C. I., Campos-Jara, C., Andrade, D. C., Alvarez, C., Martinez, C., Castro-Sepulveda, M., Pereira, A., Marques, M. C. and Izquierdo, M. (2014) High-speed resistance training is more effect than low-speed resistance training to increase functional capacity and muscle performance in older women. Experimental Gerontology, 58, 51-57, doi: 10.1016/j.exger.2014.07.001
  16. Peterson, S. R., Bagnall, K. M., Wenger, H. A., Reid, D. C., Castor, W. R. and Quinney, H. A. (1989) The influence of velocity-specific resistance training on the in vivo torque-velocity relationship and the cross-sectional area of the quadriceps femoris. Journal of Orthopaedic and Sports Physical Therapy, 10(11), 456-462
  17. Young, W. B. and Bilby, G. E. (1993) The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. Journal of Strength and Conditioning Research, 7(3), 172-178
  18. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Kushnick, M. R., Staron, R. S. and Toma, K. (2008) Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. Journal of Strength and Conditioning Research, 22(1), 119-127.
  19. Marsh, A. P., Miller, M. E., Rejeski, J., Hutton, S. L. and Kritchevsky, S. B. (2009) Lower extremity muscle function after strength or power training in older adults. Journal of Aging and Physical Activity, 17, 416-443
  20. Fielding, R. A., LeBrasseur, N. K., Cuaco, A., Bean, J., Mizer, K. and Fiatarone Singh, M. A. (2002) High-velocity resistance training increases skeletal muscle peak power in older women. Journal of the American Geriatrics Socieity, 50(4), 655-662
  21. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Kushnick, M. R., Staron, R. S. and Toma, K. (2008) Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. Journal of Strength and Conditioning Research, 22(1), 119-127
  22. Carlson, L., Jonker, B., Westcott, W. L., Steele, J. and Fisher, J. P. (2019) Neither repetition duration nor number of muscle actions affect strength increases, body composition, muscle size, or fasted blood glucose in trained males and females. Applied Physiology, Nutrition, and Metabolism, 44(2), 200-207, doi: 10.1139-apnm-2018-0376
  23. Westcott, W. L., Winett, R. A., Anderson, E. S., & Wojcik, J. R. (2001). Effects of regular and slow speed resistance training on muscle strength. Journal of sports medicine and physical fitness, 41(2), 154.
  24. Neils, C. M., Udermann, B. E., Brice, G. A., Winchester, J. B., & McGuigan, M. R. (2005). Influence of contraction velocity in untrained individuals over the initial early phase of resistance training. The Journal of Strength & Conditioning Research, 19(4), 883-887.
  25. KEELER, L. K., FINKELSTEIN, L. H., MILLER, W., & Fernhall, B. O. (2001). Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. The Journal of Strength & Conditioning Research, 15(3), 309-314.
  26. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E. and Staron, R. S. (2012) Early-phase muscular adaptations in response to slow-speed versus traditional resistance training regimens. European Journal of Applied Physiology, 112, 3585-3595, doi: 10.1007/s00421-012-2339-3
    • Repetition Range
  27. Mitchell, C. J., Churchward-Venne, T. A., West, D. W. D., Burd, N. A., Breen, L., Baker, S. K. and Phillips, S. M. (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113, 71-77
  28. Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B. and Sonmez, G. T. (2015) Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength and Conditioning Research, 29(10) 2954-2963
  29. Van Roie, E., Delecluse, C., Coudyzer, W., Boonen, S. and Bautmans, I. (2013) Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Experimental Gerontology, 48, 1351-1361
  30. Anderson, T. and Kearney, J. T. (1982) Effects of three resistance training programs on muscular strength and absolute and relative endurance. Research Quarterly for Exercise and Sport, 53(1), 1-7
  31. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Kushnick, M. R., Staron, R. S. and Toma, K. (2008) Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. Journal of Strength and Conditioning Research, 22(1), 119-127
  32. Vincent, K. R., Braith, R. W., Feldman, R. A., Magyari, P. M., Cutler, R. B., Persin, S. A., Lennon, S. L., Gabr, A. H. and Lowenthal, D. T. (2002) Resistance exercise and physical performance in adults aged 60 to 83. Journal of the American Geriatrics Society, 50(6), 1100-1107
  33. Netreba, A., Popov, D., Anastasia, V., Yan, B. and Olga, V. (2009) Physiological effects of low-intensity strength training without relaxation. Human Physiology, 35(4), 479-483
  34. Jackson, N. P., Hickey, M. S. and Reiser, R. F. (2007) High resistance/low repetition vs low resistance/high repetition training: effects on performance of trained cyclists. Journal of Strength and Conditioning Research, 21(1), 289-295
  35. Vincent, K. R., Braith, R. W., Feldman, R. A., Kallas, H. E., and Lowenthal, D. T. (2002) Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Archives of Internal Medicine, 162(6), 673-678
  36. Vanhelder, W. P., Radomski, M. W. and Goode, R. C. (1984) Growth hormone responses during intermittent weight lifting exercise in men. European Journal of Applied Physiology, 53, 31-34
  37. Holm, L., Reitelseder, S., Pedersen, T. G., Doessing, S., Petersen, S. G., Flyvbjerg, A., Andersen, J. L., Aagaard, P. and Kjaer, M. (2008) Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. Journal of Applied Physiology, 105, 1454-1461
  38. Van Roie, E., Delecluse, C., Coudyzer, W., Boonen, S. and Bautmans, I. (2013) Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Experimental Gerontology, 48, 1351-1361
  39. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E. and Staron, R. S. (2012) Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. European Journal of Applied Physiology, 112(10), 3585-595
  40. Anderson, T. and Kearney, J. T. (1982) Effects of three resistance training programs on muscular strength and absolute and relative endurance. Research Quarterly for Exercise and Sport, 53(1), 1-7
  41. Fatouros, I. G., Kambas, A., Katrabasas, I., Nikolaidis, K., Chatzinikolaou, A., Leontsini, D. and Taxildaris, K. (2005) Strength training and detraining effects on muscular strength, anaerobic power, and mobility of inactive older men are intensity dependent. British Journal of Sports Medicine, 39, 776-780, doi: 10.1136/bjsm.2005.019117
  42. Kalapotharakos, V. I., Michalopoulos, M., Tokmakidis, S. P., Godolias, G. and Gourgoulis, V. (2005) Effects of a heavy and a moderate resistance training on functional performance in older adults. Journal of Strength and Conditioning Research, 19(3), 652-657
    • Sets to Failure
  43. Terada, K., Kikuchi, N., Burt, D., Voisin, S., & Nakazato, K. (2022). Low-load resistance training to volitional failure induces muscle hypertrophy similar to volume-matched, velocity fatigue. The journal of strength & conditioning research, 36(6), 1576-1581.
  44. Izquierdo, M., Ibañez, J., González-Badillo, J. J., Häkkinen, K., Ratamess, N. A., Kraemer, W. J., French, D. N., Eslava, J., Altadill, A., Asiain, X., & Gorostiaga, E. M. (2006). Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. Journal of applied physiology (Bethesda, Md. : 1985), 100(5), 1647–1656. https://doi.org/10.1152/japplphysiol.01400.2005
  45. Martorelli, S., Cadore, E. L., Izquierdo, M., Celes, R., Martorelli, A., Cleto, V. A., Alvarenga, J. G., & Bottaro, M. (2017). Strength Training with Repetitions to Failure does not Provide Additional Strength and Muscle Hypertrophy Gains in Young Women. European journal of translational myology, 27(2), 6339. https://doi.org/10.4081/ejtm.2017.6339.
    • Load
  46. Vincent, K. R., Braith, R. W., Feldman, R. A., Magyari, P. M., Cutler, R. B., Persin, S. A., ... & Lowenthal, D. T. (2002). Resistance exercise and physical performance in adults aged 60 to 83. Journal of the American Geriatrics Society, 50(6), 1100-1107.
  47. Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., ... & Toma, K. (2008). Comparison of early phase adaptations for traditional strength and endurance, and low-velocity resistance training programs in college-aged women. The Journal of Strength & Conditioning Research, 22(1), 119-127.
  48. Faigenbaum, A. D., Westcott, W. L., Loud, R. L., & Long, C. (1999). The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics, 104 (1), e5-e5.
  49. Masuda, K., Choi, J. Y., Shimojo, H., & Katsuta, S. (1999). Maintenance of myoglobin concentration in human skeletal muscle after heavy resistance training. European journal of applied physiology and occupational physiology, 79, 347-352.
  50. Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B., & Sonmez, G. T. (2015). Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength & Conditioning Research, 29(10), 2954-2963.
  51. Van Roie, E., Bautmans, I., Boonen, S., Coudyzer, W., Kennis, E., & Delecluse, C. (2013). Impact of external resistance and maximal effort on force-velocity characteristics of the knee extensors during strengthening exercise: a randomized controlled experiment. The Journal of Strength & Conditioning Research, 27(4), 1118-1127.
  52. Anderson, T., & Kearney, J. T. (1982). Effects of three resistance training programs on muscular strength and absolute and relative endurance. Research Quarterly for Exercise and Sport, 53(1), 1-7.
  53. Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., ... & Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European Journal of Applied Physiology, 88(1), 50-60.
  54. Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113(1), 71-77
  55. De Vos, N. J., Singh, N. A., Ross, D. A., Stavrinos, T. M., Orr, R., & Fiatarone Singh, M. A. (2005). Optimal load for increasing muscle power during explosive resistance training in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(5), 638-647.
  56. Stone, W. J., & Coulter, S. P. (1994). Strength/endurance effects from three resistance training protocols with women. J Strength Cond Res, 8(4), 231-234.
  57. Faigenbaum, A. D., Loud, R. L., O'CONNELL, J. I. L. L., Glover, S., O'CONNELL, J. A. S. O. N., & Westcott, W. L. (2001). Effects of different resistance training protocols on upper-body strength and endurance development in children. The Journal of Strength & Conditioning Research, 15 (4), 459 – 465.
  58. Ratzin Jackson, C. G., Dickinson, A. L., & Ringel, S. P. (1990). Skeletal muscle fiber area alterations in two opposing modes of resistance-exercise training in the same individual. European Journal of Applied Physiology and Occupational Physiology, 6(1), 37-41.
    • Range of Motion (ROM)
  59. Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European journal of applied physiology, 113, 2133-2142.
  60. Hartmann, H., Wirth, K., Klusemann, M., Dalic, J., Matuschek, C., & Schmidtbleicher, D. (2012). Influence of squatting depth on jumping performance. The Journal of Strength & Conditioning Research, 26(12), 3243-3261.
  61. Rhea, M. R., Kenn, J. G., Peterson, M. D., Massey, D., Simão, R., Marin, P. J., ... & Krein, D. (2016). Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Human movement, 17(1), 43-49
  62. Pallarés, J. G., Cava, A. M., Courel-Ibáñez, J., González-Badillo, J. J., & Morán-Navarro, R. (2019). Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. European journal of sport science, 1-10.
  63. McMahon, G. E., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. The Journal of Strength & Conditioning Research, 28(1), 245-255.
  64. Weiss, L. W., FRX, A. C., Wood, L. E., Relyea, G. E., & Melton, C. (2000). Comparative effects of deep versus shallow squat and leg-press training on vertical jumping ability and related factors. The Journal of Strength & Conditioning Research, 14(3), 241-247.
  65. Kubo, K., Ikebukuro, T., & Yata, H. (2019). Effects of squat training with different depths on lower limb muscle volumes. European journal of applied physiology, 119, 1933-1942.
  66. Graves, J. E., Pollock, M. L., Jones, A. E., Colvin, A. B., & Leggett, S. H. (1989). Specificity of limited range of motion variable resistance training. Med Sci Sports Exerc, 21(1), 84-89.
  67. Panza, P., Vieira, J. G., Campos, Y., Novaes, M., Novaes, J., & Vianna, J. M. (2025). Effects of final partial range of motion vs. full range of motion resistance training on muscle adaptations in physically active young men: a within-subject study. Retos: nuevas tendencias en educación física, deporte y recreación, (62), 388-397.
  68. Pedrosa, G. F., Lima, F. V., Schoenfeld, B. J., Lacerda, L. T., Simões, M. G., Pereira, M. R., ... & Chagas, M. H. (2022). Partial range of motion training elicits favorable improvements in muscular adaptations when carried out at long muscle lengths. European journal of sport science, 22(8), 1250-1260.
  69. Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P., & Mil-Homens, P. (2018). Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. European journal of applied physiology, 118, 1969-1983.
  70. Werkhausen, A., E. Solberg, C., Paulsen, G., Bojsen‐Møller, J., & Seynnes, O. R. (2021). Adaptations to explosive resistance training with partial range of motion are not inferior to full range of motion. Scandinavian Journal of Medicine & Science in Sports, 31(5), 1026-1035.
  71. MOOKERJEE, S., & RATAMESS, N. (1999). Comparison of strength differences and joint action durations between full and partial range-of-motion bench press exercise. The Journal of Strength & Conditioning Research, 13(1), 76-81.
  72. Clark, R. A., Bryant, A. L., & Humphries, B. (2008). An examination of strength and concentric work ratios during variable range of motion training. The Journal of Strength & Conditioning Research, 22(5), 1716-1719.
  73. Nunes, J.E.; Marson, J.V. (2023). Effect of movement range in maximum number of repetitions in weight training exercises. International Journal of Sports and Physical Education, 9 (2), 17-23
  74. Mendonça, Tanise Pires, Felipe José Aidar, Dihogo Gama Matos, Raphael Fabrício Souza, Anderson Carlos Marçal, Paulo Francisco Almeida-Neto, Breno Guilherme Cabral et al. "Force production and muscle activation during partial vs. full range of motion in Paralympic Powerlifting." PloS One 16, no. 10 (2021): e0257810.
  75. Massey, D. C., Vincent, J., Maneval, M., Moore, M., & Johnson, J. T. (2004). An analysis of full range of motion vs. partial range of motion training in the development of strength in untrained men. The Journal of Strength & Conditioning Research, 18(3), 518-521.
  76. Massey, C. D., Vincent, J., Maneval, M., & Johnson, J. T. (2005). Influence of range of motion in resistance training in women: early phase adaptations. The Journal of Strength & Conditioning Research, 19(2), 409-411.
  77. Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2022). Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training. The Journal of Strength & Conditioning Research, 36(1), 10-15.
  78. Clark, R. A., Humphries, B., Hohmann, E., & Bryant, A. L. (2011). The influence of variable range of motion training on neuromuscular performance and control of external loads. The Journal of Strength & Conditioning Research, 25(3), 704-711.
  79. Stasinaki, A. N., Zaras, N., Methenitis, S., Tsitkanou, S., Krase, A., Kavvoura, A., & Terzis, G. (2018). Triceps brachii muscle strength and architectural adaptations with resistance training exercises at short or long fascicle length. Journal of functional morphology and kinesiology, 3(2), 28.
  80. Maeo, S., Wu, Y., Huang, M., Sakurai, H., Kusagawa, Y., Sugiyama, T., ... & Isaka, T. (2023). Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. European journal of sport science, 23(7), 1240-1250.
  81. Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., ... & Hamaoka, T. (2019). Partial range of motion exercise is effective for facilitating muscle hypertrophy and function through sustained intramuscular hypoxia in young trained men. The Journal of Strength & Conditioning Research, 33(5), 1286-1294.
  82. Mir, I. A., Mohd Jamali, M. N. Z., Humayra, S., Chong, K. W., Amalnerkar, T., & Sirajudeen, M. S. (2025). Partial versus full range of motion triceps strength training on shooting accuracy among recreational basketball players: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 17(1), 41.
  83. Baroni, B. M., Pompermayer, M. G., Cini, A., Peruzzolo, A. S., Radaelli, R., Brusco, C. M., & Pinto, R. S. (2017). Full range of motion induces greater muscle damage than partial range of motion in elbow flexion exercise with free weights. The Journal of Strength & Conditioning Research, 31(8), 2223-2230.
  84. Pinto, R. S., Gomes, N., Radaelli, R., Botton, C. E., Brown, L. E., & Bottaro, M. (2012). Effect of range of motion on muscle strength and thickness. The Journal of Strength & Conditioning Research, 26(8), 2140-2145.
  85. Graves, J. E., Pollock, M. L., Leggett, S. H., Carpenter, D. M., Fix, C. K., & Fulton, M. N. (1992). Limited range-of-motion lumbar extension strength training. Medicine and science in sports and exercise, 24(1), 128-133.
  86. Steele, J., Bruce-Low, S., Smith, D., Jessop, D., & Osborne, N. (2013). A randomized controlled trial of limited range of motion lumbar extension exercise in chronic low back pain.
  87. Wolf, M., Korakakis, P. A., Piñero, A., Mohan, A. E., Hermann, T., Augustin, F., ... & Schoenfeld, B. J. (2025). Lengthened partial repetitions elicit similar muscular adaptations as full range of motion repetitions during resistance training in trained individuals. PeerJ13, e18904.
  88. Sadacharan, C. M., & Seo, S. (2021). Effect of large versus small range of motion in the various intensities of eccentric exercise-induced muscle pain and strength. International journal of exercise science, 14(7), 1.
    • Rest Between Sets
  89. Schoenfeld, B.J., Pope, Z.K., Benik, F.M., Hester, G.M., Sellers, J., Nooner, J.L., Schnaiter, J.A., Bond-Williams, K.E., Carter, A.S., Ross, C.L. and Just, B.L. (2016) Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. Journal of Strength and Conditioning Research, 30(7): 1805-1812
  90. Jambassi Filho, J. C., Gurjão, A. L. D., Ceccato, M., Prado, A. K. G., Gallo, L. H. and Gobbi, S. (2017) Chronic effects of different rest intervals between sets on dynamic and isometric muscle strength and muscle activity in trained older women. American Journal of Physical Medicine & Rehabilitation, 96(9), 627-633.
  91. Longo, A. R., Silva-Batista, C., Pedroso, K., de Salles Painelli, V., Lasevicius, T., Schoenfeld, B. J., Aihara, A. Y., Peres, B. A., Tricoli, V. and Teixeira, E. L. (2020) Volume Load Rather Than Resting Interval Influences Muscle Hypertrophy During High-Intensity Resistance Training. The Journal of Strength & Conditioning Research, doi: 10.1519/JSC.0000000000003668.
  92. Gentil, P., Bottaro, M., Oliveira, E., Veloso, J., Amorim, N., Saiuri, A. and Wagner, D. R. (2010) Chronic effects of different between-set rest durations on muscle strength in nonresistance trained young men. The Journal of Strength & Conditioning Research, 24(1), 37-42.
  93. Ahtiainen, J. P., Pakarinen, A. A., Kraemer, W. J., and Hakkinen, K. (2005). Short vs. long rest periods between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength Conditioning Research, 19 (3), 572-582
  94. Simao, R., Polito, M. and Monteiro, W. (2008) Effects of different rest intervals in a resistance training program for trained individuals. Revista Brasileira de Medicina do Esporte, 14(4), 353-356.
  95. Rostameyan, A. R., Alvani, J and Zade, B. T. (2015) Comparison of different rest intervals between resistance training sets on motor and physical variables and body composition in active men. International Research Journal of Applied and Basic Sciences, 9(3), 270-273
  96. Villanueva, M.G., Lane, C.J. and Schroeder, E.T. (2015) Short rest interval lengths between sets optimally enhance body composition and performance with 8 weeks of strength resistance training in older men. European Journal of Applied Physiology, 115 (2), 295-308
  97. Simão, R., Polito, M., de Salles, B. F., Marinho, D. A., Garrido, N. D., Junior, E. R. T. S., & Willardson, J. M. (2022). Acute and Long-Term Comparison of Fixed vs. Self-Selected Rest Interval Between Sets on Upper-Body Strength. The Journal of Strength & Conditioning Research36(2), 540-544.
  98. Piirainen, J. M., Tanskanen, M., Nissilä, J., Kaarela, J., Väärälä, A., Sippola, N., & Linnamo, V. (2011). Effects of a heart rate–based recovery period on hormonal, neuromuscular, and aerobic performance responses during 7 weeks of strength training in men. The Journal of Strength & Conditioning Research, 25(8), 2265-2273.
  99. Scudese, E., Simão, R., Senna, G., Vingren, J. L., Willardson, J. M., Baffi, M., & Miranda, H. (2016). Long rest interval promotes durable testosterone responses in high-intensity bench press. The Journal of Strength & Conditioning Research30(5), 1275-1286.
  100. Matuszak, M. E., Weiss, L. W., Ireland, T. R. and McKnight, M. M. (2003) Effect of rest interval length on repeated 1 repetition maximum back squats. Journal of Strength and Conditioning Research, 17(4), 634-637
  101. Gonzalez-Hernandez, J. M., Jimenez-Reyes, P., Janicijevic, D., Tufano, J. J., Marquez, G. and Garcia-Ramos, A. (2020) effect of different interset rest intervals on mean velocity during squat and bench press exercises. Sports Biomechanics, 1-14, doi: 10.1080/14763141.2020.1766102
  102. Ammar, A., Riemann, B. L., Trabelsi, K., Blaumann, M., Abdelkarim, O., Chtourou, H., Driss, T. and Hökelmann, A. (2019) Comparison of 2-and 3-minute inter-repetition rest periods on maximal jerk technique and power maintenance. Research Quarterly for Exercise and Sport, 90(3), 287-296.
  103. Ammar, A., Riemann, B. L., Abdelkarim, O., Driss, T., & Hökelmann, A. (2020). Effect of 2-vs. 3-minute interrepetition rest period on maximal clean technique and performance. The Journal of Strength & Conditioning Research, 34(9), 2548-2556.
  104. Tan, K., bin Mohamad, N. I., & Nadzalan, A. B. M. (2021). The Effect of Inter-Repetition Rest Duration on Kinematic of Snatch. Annals of Applied Sport Science, 0-0.
    • Circuit Training
  105. Marín-Pagán, C., Blazevich, A. J., Chung, L. H., Romero-Arenas, S., Freitas, T. T., & Alcaraz, P. E. (2020). Acute physiological responses to high-intensity resistance circuit training vs. traditional strength training in soccer players. Biology, 9(11), 383.
  106. Márquez, G., Romero‐Arenas, S., Marín‐Pagán, C., Vera‐Ibañez, A., Fernandez Del Olmo, M., & Taube, W. (2017). Peripheral and central fatigue after high intensity resistance circuit training. Muscle & Nerve56(1), 152-159.
  107. Alcaraz, P. E., Sánchez-Lorente, J., & Blazevich, A. J. (2008). Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. The Journal of Strength & Conditioning Research, 22(3), 667-671.
  108. Deminice, R., Sicchieri, T., Mialich, M. S., Milani, F., Ovidio, P. P., & Jordao, A. A. (2011). Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. The Journal of Strength & Conditioning Research25(3), 798-804.
  109. Alcaraz, P. E., Perez-Gomez, J., Chavarrias, M., & Blazevich, A. J. (2011). Similarity in adaptations to high-resistance circuit vs. traditional strength training in resistance-trained men. The Journal of Strength & Conditioning Research, 25(9), 2519-2527.circuit training compared traditional Strength
  110. Johnson, S., Burns, S., & Azevedo, K. (2013). Effects of exercise sequence in resistance-training on strength, speed, and agility in high school football players. International Journal of Exercise Science, 6(2), 5.
  111. Balachandran, A., Krawczyk, S. N., Potiaumpai, M., & Signorile, J. F. (2014). High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial. Experimental gerontology60, 64-71.
    • Set Strategies
  112. Pringga, G. A., Andriana, R. M., Wardhani, I. L., & Arfianti, L. (2021). Original Research Comparison of Hamstrings and Quadriceps Femoris Muscle Thickness Increment between Agonist-Antagonist Paired Set and Traditional Set Resistance Training in Untrained Healthy Subjects.
  113. Fink, J., Schoenfeld, B. J., Sakamaki-Sunaga, M., & Nakazato, K. (2021). Physiological Responses to Agonist–Antagonist Superset Resistance Training. Journal of Science in Sport and Exercise, 3, 355-363.
  114. Yuniana, R., Tomoliyus, B. M., Nasrulloh, A., Pratama, K. W., Rosly, M. M., Karakauki, M., & Ali, S. K. S. (2023). The effectiveness of the weight training method and rest interval on VO2 max, flexibility, muscle strength, muscular endurance, and fat percentage in students. Journal of Human Movement and Sports Sciences, 11(1), 213-223.
  115. Merrigan, J. J., Jones, M. T., & White, J. B. (2019). A Comparison of compound set and traditional set resistance training in women: Changes in muscle strength, endurance, quantity, and architecture. Journal of Science in Sport and Exercise, 1, 264-272.
  116. García-Orea, G. P., Rodríguez-Rosell, D., Ballester-Sánchez, Á., Da Silva-Grigoletto, M. E., & Belando-Pedreño, N. (2023). Upper-lower body super-sets vs. traditional sets for inducing chronic athletic performance improvements. PeerJ, 11, e14636.
  117. Demirtaş, B., Çetin, O., Çakır, E., & Beyleroğlu, M. (2022). The effect of three different sets method used in resistance training on hypertrophy and maximal strength changes. Physical Education of Students, 26(6), 270-279.
  118. Razmjou, S., Rajabi, H., Jannati, M., Azizi, M., & Jahandideh, A. A. (2010). The effects of Delorme and oxford techniques on serum cell injury indices and growth factor in untrained women. World Journal of Sport Sciences, 3(1), 44-52.
  119. Mardani, A., Abednatanzi, H., Gholami, M., Ghazalian, F., & Azizbeigi, K. (2022). Interleukin-4, Interleukin-1beta, and Creatine Kinase Changes to the DeLorme and Oxford Resistance Training Techniques. Journal of Clinical Research in Paramedical Sciences, 11(2)
  120. Bostani, M., & Shariati, M. (2012). The comparison of the effects of two training methods on dynamic strength of non-athletes males. Procedia-Social and Behavioral Sciences, 46, 417-420.
  121. Rasekh, M., & Shabani, R. (2021). The comparison of the effect of double and flat pyramid training methods on hypertrophy and muscular strength of male power-lifters. Physical Education of Students, 25(2), 92-97.
  122. Sayyah, A., Asghari, E., & Arazi, H. (2021). The effects of two loading patterns of resistance training (skewed pyramid & reverse step) on some physical and physiological capabilities of non-athlete men. Turkish Journal of Kinesiology, 7(4), 123-131.
  123. HASSANZADEH, M., SAYYAH, A., & ARAZİ, H. (2023). Double-pyramid and Reverse Step Resistance Training Effectiveness on Physical Fitness Factors Among Elite Female Athletes. Turkish Journal of Sport and Exercise, 25(2), 181-190.
  124. Ribeiro, A. S., Schoenfeld, B. J., Fleck, S. J., Pina, F. L., Nascimento, M. A., & Cyrino, E. S. (2017). Effects of traditional and pyramidal resistance training systems on muscular strength, muscle mass, and hormonal responses in older women: A randomized crossover trial. The Journal of Strength & Conditioning Research, 31(7), 1888-1896.
  125. Ribeiro, A. S., Schoenfeld, B. J., Souza, M. F., Tomeleri, C. M., Venturini, D., Barbosa, D. S., & Cyrino, E. S. (2016). Traditional and pyramidal resistance training systems improve muscle quality and metabolic biomarkers in older women: A randomized crossover study. Experimental Gerontology, 79, 8-15.
  126. Ribeiro, A. S., Schoenfeld, B. J., Souza, M. F., Tomeleri, C. M., Silva, A. M., Teixeira, D. C., ... & Cyrino, E. S. (2017). Resistance training prescription with different load-management methods improves phase angle in older women. European journal of sport science, 17(7), 913-921.
  127. Ribeiro, A. S., Aguiar, A. F., Schoenfeld, B. J., Nunes, J. P., Cavalcante, E. F., Cadore, E. L., & Cyrino, E. S. (2018). Effects of different resistance training systems on muscular strength and hypertrophy in resistance-trained older women. The Journal of Strength & Conditioning Research, 32(2), 545-553.
  128. Ozrudi, M. F., Shob, S. F., & Aliabadi, S. R. (2014). Comparison of Three Methods of Weight Training to Increase the Power of the Male Students of Mazandaran University of Science and Technology. International Journal of Applied Exercise Physiology, 3(1), ISSN: 2322-3537
  129. Fischetti, F., Camporeale, F., & Greco, G. (2019). Effects of high-load resistance training versus pyramid training system on maximal muscle strength in well-trained young men: a randomized controlled study. Journal of Physical Education and Sport, 19, 80-86.
  130. Mirzaei, B., Arazi, H., Curby, D., Barbas, I., Moghaddam, M. G., & Hosseini, Y. (2012). The effects of two different resistive loading patterns on strength, hypertrophy, anaerobic power and endurance in young wrestlers. International Journal of Wrestling Science, 2(1), 41-47.
  131. Mohammadi, M., Siavoshy, H., & Rahimi, S. G. H. (2018). Comparison of the effect of two selected resistance training patterns on some physical and physiological factors of elite freestyle wrestler young boys. National Journal of Physiology, Pharmacy and Pharmacology, 8(2), 278-284.
  132. Pooja, G., Anushree, G., Neha, T., & Surendra, W. (2017). Comparison of the effect of DeLorme and MacQueen strengthening protocol for improving quadriceps muscle strength in normal female individuals. Int J Physiother Res, 5(3), 2127-32
  133. Dos Santos, L., Ribeiro, A. S., Cavalcante, E. F., Nabuco, H. C., Antunes, M., Schoenfeld, B. J., & Cyrino, E. S. (2018). Effects of modified pyramid system on muscular strength and hypertrophy in older women. International Journal of Sports Medicine, 39(08), 613-618.
  134. Dos Santos, L., Ribeiro, A. S., Nunes, J. P., Tomeleri, C. M., Nabuco, H. C., Nascimento, M. A., ... & Cyrino, E. S. (2020). Effects of pyramid resistance-training system with different repetition zones on cardiovascular risk factors in older women: A randomized controlled trial. International Journal of Environmental Research and Public Health, 17(17), 6115.
  135. Singh, B., & Kumar, S. (2021). Significance of Training on Drop Sets In Various Sports Colleges. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(12), 4848-4856.
  136. Fisher, J. P., Carlson, L., & Steele, J. (2016). The effects of breakdown set resistance training on muscular performance and body composition in young men and women. The Journal of Strength & Conditioning Research, 30(5), 1425-1432.
  137. Fasihiyan, M., Forbes, S., Taheri, M., Lopez, J. G., Babaie, M., Dejam, B., & Nourshahi, M. (2023). The effects of a single or multi-step drop-set training compared to traditional resistance training on muscle performance and body composition. Scientific Journal of Sport and Performance, 2(3), 410-422.
  138. Fink, J., Schoenfeld, B. J., Kikuchi, N., & Nakazato, K. (2018). Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J Sports Med Phys Fitness, 58(5), 597-605.
  139. Enes, A., Alves, R. C., Schoenfeld, B. J., Oneda, G., Perin, S. C., Trindade, T. B., ... & Souza-Junior, T. P. (2021). Rest-pause and drop-set training elicit similar strength and hypertrophy adaptations compared with traditional sets in resistance-trained males. Applied Physiology, Nutrition, and Metabolism, 46(11), 1417-1424.
  140. Ozaki, H., Kubota, A., Natsume, T., Loenneke, J. P., Abe, T., Machida, S., & Naito, H. (2018). Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. Journal of sports sciences, 36(6), 691-696.
  141. Angleri, V., Ugrinowitsch, C., & Libardi, C. A. (2017). Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. European journal of applied physiology, 117, 359-369.
  142. Varović, D., Žganjer, K., Vuk, S., & Schoenfeld, B. J. (2021). Drop-set training elicits differential increases in non-uniform hypertrophy of the quadriceps in leg extension exercise. Sports, 9(9), 119.
    • Sets Per Muscle Group
  143. Steele, J., Fitzpatrick, A., Bruce-Low, S. and Fisher, J. (2015) The effects of set volume during isolated lumbar extension resistance training in recreationally trained males. PeerJ, doi: 10.7717/peerj.878
  144. Cannon, J., & Marino, F. E. (2010). Early-phase neuromuscular adaptations to high-and low-volume resistance training in untrained young and older women. Journal of sports sciences28(14), 1505-1514.
  145. Starkey, D. B., Pollock, M. L., Ishida, Y., Welsch, M. A., Brechue, W. F., Graves, J. E., & Feigenbaum, M. S. (1996). Effect of resistance training volume on strength and muscle thickness. Medicine and science in sports and exercise, 28(0), 10.
  146. Correa Barcelos, L., Nunes, P. R. P., de Souza, L. R. M. F., de Oliveira, A. A., Furlanetto, R., Marocolo, M. and Orsatti, F. L. (2015) Low-load resistance training promotes muscular adaptations regardless of vascular occlusion, load, or volume. European Journal of Applied Physiology, doi: 10.1007/s00421-015-3141-9
  147. Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of applied physiology113(1), 71-77.
  148. Arce Esquivel, A. A. and Welsch, M. A. (2007) High and low volume resistance training and vascular function. International Journal of Sports Medicine, 28, 217-221.
  149. Bickel, S. M., Shatzer, J. L. and Van Meter, S. B. (2007) Single-set versus multiple-set resistance training in college-aged females. Journal of Undergraduate Kinesiology Research, 3(1), 1-8.
  150. Abdul Kadir, Z., Nadzalan, A. M., Yusof, S. M., Aiman, S., & Shapie, M. N. M. (2014). Single-versus three-set resistance training on strength and power among untrained men. In Proceedings of the International Colloquium on Sports Science, Exercise, Engineering and Technology 2014 (ICoSSEET 2014) (pp. 177-187). Springer, Singapore.
  151. Silvester, L. J., Stiggins, C., McGown, C. and Bryce, G. R. (1981) The effect of variable resistance and free-weight training programs on strength and vertical jump. Strength & Conditioning Journal, 3(6), 30-33.
  152. Nunes, P. R. P, Barcelos, L. C., Oliveira, A. A., Furlanetto Jr., R., Martins, F. M., Resende, E. A. M. R. and Orsatti, F. L. (2019) Muscular strength adaptations and hormonal responses after two different multiple-set protocols of resistance training in postmenopausal women. Journal of Strength and Conditioning Research, 33(5), 1276-1285
  153. Polito, M. D., Papst, R. and Goessler, K. (2020) Twelve weeks of resistance training performed with different number of sets: effects on maximal strength and resting blood pressure of individuals with hypertension. Clinical and Experimental Hypertenxion, 43(2), 164-168, doi: 10.1080/10641963.2020.1833024
  154. Abrahin, O., Rodrigues, R. P., Nascimento, V. C., da Silva-Grigoletto, M. E., Sousa, E. C. and Marcal, A. C. (2014) Single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women. Clinical Interventions in Aging, 9, 1775-1782.
  155. Correa, C. S., Teixeira, B. C., Bittencourt, A., Lemos, L., Marques, N. R., Radaelli, R., Kruger, R. L., Reischak-Oliveira, A. and Pinto, R. S. (2014) Effects of high and low volume strength training on muscle strength, muscle volume and lipid profile in postmenopausal women. Journal of Exercise Science & Fitness, 12, 62-67
  156. Correa, C. S., Teixeira, B. C., Cobos, R. C. R., Macedo, R. C. O., Kruger, R. L., Carteri, R. B. K., ... & Reischak-Oliveira, Á. (2015). High-volume resistance training reduces postprandial lipaemia in postmenopausal women. Journal of sports sciences33(18), 1890-1901.
  157. Nunes, P. R. P., Barcelos, L. C., Oliveira, A. A., Junior, R. F., Martins, F. M., Orsatti, C. L., Resende, E. A. M. R. and Orsatti, F. L. (2016) Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age, 38(40), doi: 10.1007/s11357-016-9901-6.
  158. Cunha, P. M., Nunes, J. P., Tomeleri, C. M., Nascimento, M. A., Schoenfeld, B. J., Antunes, M., Gobbo, L. A. Teixeira, D. and Cyrino, E. S. (2020) Resistance training performed with single and multiple sets induces similar improvements in muscular strength, muscle mass, muscle quality, and IGF-1 in older women: a randomized controlled trial. Journal of Strength and Conditioning Research, 34(4), 1008-1016.
  159. Munn, J., Herbert, R. D., Hancock, M. J. and Gandevia, S. C. (2005) Resistance training for strength: effect of number of sets and contraction speed. Medicine and Science in Sports and Exercise, 37(9), 1622-1626
  160. Kelly, S. B., Brown, L. E., Coburn, J. W., Zinder, S. M., Gardner, L. M. and Nguyen, D. (2007) The effect of single versus multiple sets on strength. Journal of Strength and Conditioning Research, 21(4), 1003-1006
  161. Sooneste, H., Tanimoto, M., Kakigi, R., Saga, N., & Katamoto, S. (2013). Effects of training volume on strength and hypertrophy in young men. The Journal of Strength & Conditioning Research, 27(1), 8-13.
  162. McGee, D., Jessee, T. C., Stone, M. H. and Blessing, D. (1992) Leg and hip endurance adaptations to three weight-training programs. Journal of Applied Sport Science Research, 6(2), 92-95
  163. McBride, J. M., Blaak, J. B., & Triplett-McBride, T. (2003). Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition. European journal of applied physiology90(5), 626-632
  164. Radaelli, R., Fleck, S. J., Leite, T., Leite, R. D., Pinto, R. S., Fernandes, L., & Simão, R. (2015). Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. The Journal of Strength & Conditioning Research, 29(5), 1349-1358.
  165. Humburg, H., Baars, H., Schroeder, J., Reer, R., & Braumann, K. M. (2007). 1-set vs. 3-set resistance training: a crossover study. Journal of Strength and Conditioning Research, 21(2), 578.
  166. Ribeiro, A. S., Schoenfeld, B. J., Pina, F. L., Souza, M. F., Nascimento, M. A., dos Santos, L., ... & Cyrino, E. S. (2015). Resistance training in older women: Comparison of single vs. multiple sets on muscle strength and body composition. Isokinetics and Exercise Science23(1), 53-60.
  167. Cunha, P. M., Ribeiro, A. S., Tomeleri, C. M., Schoenfeld, B. J., Silva, A. M., Souza, M. F., Nascimento, M. A., Sardinha, L. B. and Cyrino, E. S. (2017) The effects of resistance training volume on osteosarcopenic obesity in older women. Journal of Sports Sciences, 1564-1571, doi: 10.1080/02640414.2017.1403413
  168. Barbalho, M. S. M., Gentil, P., Izquierdo, M., Fisher, J., Steele, J. and de Azevedo Raiol R. (2017) There are no no-responsders to low or high resistance trianing volumes among older women. Experimental Gerontology, doi: 10.1016/j.exger.2017.09.003
  169. Radaelli, R., Brusco, C. M., Lopez, P., Rech, A., Machado, C. L. F., Grazioli, R., Muller, D. C., Tufano, J. J., Cadore, E. L. and Pinto, R. S. (2018) Muscle quality and functionality in older women improve similarly with muscle power training using one or three sets. Experimental Gerontology, doi: 10.1016/j.exger.2019.110745
  170. Radaelli, R., Brusco, C. M., Lopez, P., Rech, A., Machado, C. L., Grazioli, R., ... & Pinto, R. S. (2019). Muscle quality and functionality in older women improve similarly with muscle power training using one or three sets. Experimental Gerontology, 128, 110745.
  171. Galvao, D. A., & Taaffe, D. R. (2005). Resistance exercise dosage in older adults: single‐versus multiset effects on physical performance and body composition. Journal of the American Geriatrics Society53(12), 2090-2097.
  172. Marzolini, S., Oh, P. I., Thomas, S. G. and Goodman, J. M. (2008) Aerobic and resistance training in coronary disease: single versus multiple sets. Medicine and Science in Sports and Exercise, 40(9), 1557-1564
  173. Heaselgrave, S. R., Blacker, J., Smeuninx, B., McKendry, J. and Breen, L. (2019) Dose-response relationship of weekly resistance-training volume and frequency on muscular adaptations in trained men. International Journal of Sports Physiology and Performance, 14, 360-368, doi: 10.1123/ijspp.2018-0427
  174. Brigatto, F. A., de Medeiros Lima, E., Germano, M. D., Aoki, M. S., Braz, T. V. and Lopes, C. R. (2022) High resistance-training volume enhances muscle thickness in resistance-trained men. Journal of Strength and Conditioning Research, 36(1), 22-30
  175. Robbins, D. W., Marshall, P. W. M. and McEwen, M. (2012) The effect of training volume on lower-body strength. Journal of Strength and Conditioning Research, 26(1), 34-39
  176. Schlumberger, A., Stec, J. and Schmidtbleicher, D. (2001) Single- vs. multiple-set strength training in women. Journal of Strength and Conditioning Research, 15, 284-289.
  177. Júnior, R. S., Leite, T., & Reis, V. M. (2011). Influence of the number of sets at a strength training in the flexibility gains. Journal of human kinetics29, 47.
  178. Kramer, J. B., Stone, M. H., O'Bryant, H. S., Conley, M. S., Johnson, R. L., Nieman, D. C., Honeycutt, D. R. and Hoke, T. P. (1997) Effects of single vs. multiple sets of weight training: impact of volume, intensity, and variation. Journal of Strength and Conditioning Research, 11(3), 143-147
  179. Kemmler, W. K., Lauber, D., Engelke, K. and Weineck, J. (2004) Effects of single- vs. multiple-set resistance training on maximum strength and body composition in trained postmenopausal women. Journal of Strength and Conditioning Research, 18(4), 689-694
  180. Baker, J. S., Davies, B., Cooper, S. M., Wong, D. P., Buchan, D. S. and Kilgore, L. (2013) Strength and body composition changes in recreationally strength-trained individuals: comparison of one versus three sets resistance-training programmes. BioMed Research International, doi: 10.1155/2013/615901
  181. Ostrowski, K. J., Wilson, G. J., Weatherby, R., Murphy, P. W., & Lyttle, A. D. (1997). The effect of weight training volume on hormonal output and muscular size and function. Journal of strength and Conditioning Research11, 148-154.
  182. Aube, D., Wadhi, T., Rauch, J., Anand, A., Barakat, C., Pearson, J., Bradshaw, J., Zazzo, S., Ugrinowitsch, C. and De Souza, E. O. (2020) Progressive resistance training volume: effects on muscle thickness, mass, and strength adaptations in resistance-trained individuals. The Journal of Strength and Conditioning Research, doi: 10.1519/JSC.0000000000003524
  183. Methenitis, S., Mpampoulis, T., Spiliopoulou, P., Papadimas, G., Papadopoulos, C., Chalari, E., ... & Terzis, G. (2020). Muscle fiber composition, jumping performance, and rate of force development adaptations induced by different power training volumes in females. Applied Physiology, Nutrition, and Metabolism, 45(9), 996-1006.
  184. Amirthalingam, T., Mavros, Y., Wilson, G. C., Clarke, J. L., Mitchell, L., and Hackett, D. A. (2017) Effects of a modified german volume training program on muscular hypertrophy and strength. Journal of Strength and Conditioning Research, 31(11), 3109-319
  185. Barbalho, M., Silveira Coswig, V., Steele, J., Fisher, J. P., Paoli, A. and Gentil, P. (2018) Evidence for an upper threshold for resistance training volume in trained women. Medicine & Science in Sports & Exercise, doi: 10.1249/MSS.0000000000001818
  186. Hackett, D. A., Amirthalingam, T., Mitchell, L., Mavros, Y., Wilson, G. C. and Halaki, M. (2018) Effects of a 12-week modified german volume training program on muscle strength and hypertrophy - a pilot study. Sports, 6(7), doi: 10.3390/sports6010007
    • Training Frequency
  187. DiFrancisco-Donoghue, J., Werner, W., & Douris, P. C. (2007). Comparison of once-weekly and twice-weekly strength training in older adults. British journal of sports medicine, 41(1), 19-22.
  188. Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C. and Handy, T. C. (2010) Resistance training and executive functions: a 12-month randomized controlled trial. Archives of Internal Medicine, 170(2), 170-178
  189. da Silva, R. G., da Silva, D. R. P., Pina, F. L. C., do Nascimento, M. A., Ribeiro, A. S. and Cyrino, E. S. (2017) Effect of two different weekly resistance training frequencies on muscle strength and blood pressure in normotensive older women. Revista Brasileira de Cineantropometria & Desempenho Humano, 19, 118-127
  190. Norris, M. K., Bell, G. J., North, S., and Courneya, K. S. (2015) Effects of resistance training frequency on physical functioning and quality of life in prostate cancer survivors: a pilot randomized controlled trial. Prostate Cancer and Prostatic Disease, doi: 10.1038/pscan.2015.28
  191. Farinatti, P. T. V., Geraldes, A. A. R., Bottaro, M. F., Lima, M. V. I. C., Albuquerque, R. B. and Fleck, S. J. (2013) Effects of different resistance training frequencies on the muscle strength and functional performance of active women older than 60 years. Journal of Strength and Conditioning Research, 27(8), 2225-2234
  192. Ferri, A., Narici, M., Grassi, B., & Pousson, M. (2006). Neuromuscular recovery after a strength training session in elderly people. European journal of applied physiology, 97(3), 272-279.
  193. Orssatto, L. D. R., Moura, B. D., Bezerra, E. D. S., Andersen, L. L., Oliveira, S. D., & Diefenthaeler, F. (2018). Influence of strength training intensity on subsequent recovery in elderly. Experimental gerontology, 106, 232-239.
  194. Walker, S., Serrano, J., van Roie, E. (2018). Maximum dynamic lower-limb strength was maintained during 24-week reduced training frequency in previously sedentary older women. The Journal of Strength & Conditioning Research, 32(4), 1063-1071.
  195. Padilha, C. S., Ribeiro, A. S., Fleck, S. J., Nascimento, M. A., Pina, F. L. C., Okino, A. M., Venturini, D., Barbosa, D. S., Mayhew, J. L. and Cyrino, E. S. (2015) Effect of resistance training with different frequencies and detraining on muscular strength and oxidative stress biomarkers in older women. AGE, 37(104), doi: 10.1007/s11357-015-9841-6.
  196. Campa, F., Latessa, P. M., Greco, G., Mauro, M., Mazzuca, P., Spiga, F. and Toselli, S. (2020) Effects of different resistance training frequencies on body composition, cardiometabolic risk factors, and handgrip strength in overweight and obese women: a randomized controlled trial. Journal of Functional Morphology and Kinesiology, 5(51), doi: 10.3390/jfmk5030051.
  197. Fernandez-Lezaun, E., Schumann, M., Makinen, T., Kyrolainen, H. and Walker, S. (2017) Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Experimental Gerontology, 95, 44-53, doi: 10.1016/j.exger.2017.05.012
  198. Graves, J. E., Pollock, M. L., Leggett, S. H., Braith, R. W., Carpenter, D. M. and Bishop, L. E. (1988) Effect of reduced frequency on muscular strength*. International Journal of Sports Medicine, 9, 316-319
  199. Ronnestad, B., Nymark, B. S. and Raastad, T. (2011) Effects of in-season strength maintenance training frequency in professional soccer players. Journal of Strength and Conditioning Research, 25, 2653-2660
  200. Faigenbaum, A. D., Milliken, L. A., Loud, R. L., Burak, B. T., Doherty, C. L. and Westcott, W. L. (2002) Comparison of 1 and 2 days per week of strength training in children. Research Quarterly for Exercise and Sport, 73(4), 416-424
  201. Burt, J., Wilson, R. and Willardson, J. M. (2007) A comparison of once versus twice per week training on leg press strength in women. The Journal of Sports Medicine and Physical Fitness, 47(1), 13-17
  202. Braith, R. W., Graves, J. E., Pollock, M. L., Leggett, S. L., Carpenter, D. M., & Colvin, A. B. (1989). Comparison of 2 vs 3 days/week of variable resistance training during 10-and 18-week programs. International journal of sports medicine, 10(06), 450-454.
  203. Serra, R., Saavedra, F., de Salles, B. F., Dias, M. R., Costa, P. B., Alves, H. and Simao, R. (2015) The effects of resistance training frequency on strength gains. Journal of Exercise Physiology-online, 18(1), 37-45
  204. Crane, J. S., Thompson, B. J., Harrell, D. C., Bressel, E. and Heath, E. M. (2020) Comparison of high versus low eccentric-based resistance training frequencies on short-term muscle function adaptations. Journal of Strength and Conditioning Research, 36(2), 332-339
  205. DeRenne, C., Hetzler, R. K., Buxton, B. P., & Ho, K. W. (1996). Effects of training frequency on strength maintenance in pubescent baseball players. Journal of Strength and Conditioning Research, 10, 8-14.
  206. Wikstrom-Frisen, L., Boraxbekk, C.-J. and Henriksson-Larsen, K. (2017) Effects on power, strength and lean body mass of menstrual-oral contraceptive cycle based resistance training. The Journal of Sports Medicine and Physical Fitness, 57(1-2), 43-52, doi: 10.23736/S0022-4707.16.05848-5
  207. Fortes, L. S., Costa, M. C., Ferreira, M. E., Nascimento-Júnior, J. R., Fiorese, L., Lima-Júnior, D. R., & Cyrino, E. S. (2018). Frequency of resistance training does not affect inhibitory control or improve strength in well-trained young adults. Plos one, 13(11), doi: 10.1371/journal.pone.0206784
  208. Arazi, H. and Asadi, A. (2011) Effects of 8 weeks equal-volume resistance training with different workout frequency on maximal strength, endurance and body composition. International Journal of Sports Science and Engineering, 5(2), 112-118
  209. Arazi, H., Asadi, A., Gentil, P., Ramirez-Campillo, R., Jahangiri, P., Ghorbani, A., Hackney, A. C. and Zouhal, H. (2021) Effects of different resistance training frequencies on body composition and muscular performance adaptations in men. PeerJ 9:e10537, doi: 10.7717/peerj.10537
  210. Ribeiro, A. S., Schoenfeld, B. J., Silva, D. R., Pina, F. L., Guariglia, D. A., Porto, M., ... & Cyrino, E. S. (2015). Effect of Two-Versus Three-Way Split Resistance Training Routines on Body Composition and Muscular Strength in Bodybuilders: A Pilot Study. International Journal of Sport Nutrition & Exercise Metabolism, 25(6).
  211. Firoozi, H., Arazi, H. and Asadi, A. (2020) Effects of resistance training program on muscular performance adaptations: comparing three vs. four times per week. Biomedical Human Kinetics, 12, 149-156, doi: 10.2478/bhk-2020-0019
  212. Pareja-Blanco, F., Rodriguez-Rosell, D., & Gonzalez-Badillo, J. J. (2019). Time course of recovery from resistance exercise before and after a training program. The Journal of Sports Medicine and Physical Fitness, 59(9), 1458-1465.
  213. González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Ribas, J., López-López, C., Mora-Custodio, R., ... & Pareja-Blanco, F. (2016). Short-term recovery following resistance exercise leading or not to failure. International journal of sports medicine, 37(04), 295-304.
  214. Morán-Navarro, R., Pérez, C. E., Mora-Rodríguez, R., de la Cruz-Sánchez, E., González-Badillo, J. J., Sánchez-Medina, L., & Pallarés, J. G. (2017). Time course of recovery following resistance training leading or not to failure. European journal of applied physiology, 117(12), 2387-2399.
  215. Mangine, G. T., Serafini, P. R., Stratton, M. T., Olmos, A. A., VanDusseldorp, T. A., & Feito, Y. (2022). Effect of the repetitions-in-reserve resistance training strategy on bench press performance, perceived effort, and recovery in trained men. Journal of Strength and Conditioning Research, 36(1), 1-9.
  216. Ramos-Campo, D., Martínez-Aranda, L. M., Caravaca, L. A., Ávila-Gandí, V., & Rubio-Arias, J. Á. (2021). Effects of resistance training intensity on the sleep quality and strength recovery in trained men: a randomized cross-over study. Biology of Sport, 38(1), 81-88.
  217. Amdi, C. H., Cleather, D. J., & Tallent, J. (2021) Impact of training protocols on lifting velocity recovery in resistance trained males and females. Sports, 9, 157. https://doi.org?10.3390/sports9110157
  218. Linnamo, V., Pakarinen, A., Komi, P. V., Kraemer, W. J., & Häkkinen, K. (2005). Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. Journal of strength and conditioning research, 19(3), 566.
  219. Jamurtas, A. Z., Theocharis, V., Tofas, T., Tsiokanos, A., Yfanti, C., Paschalis, V., ... & Nosaka, K. (2005). Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. European journal of applied physiology, 95, 179-185.
  220. Saka, T., Akova, B., Yazici, Z., Sekir, U., Gür, H., & Ozarda, Y. (2009). Difference in the magnitude of muscle damage between elbow flexors and knee extensors eccentric exercises. Journal of Sports Science & Medicine, 8(1), 107.
  221. Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European journal of applied physiology, 111, 211-223.
  222. Nogueira, F. R. D., Libardi, C. A., Nosaka, K., Vechin, F. C., Cavaglieri, C. R., & Chacon-Mikahil, M. P. T. (2014). Comparison in responses to maximal eccentric exercise between elbow flexors and knee extensors of older adults. Journal of science and medicine in sport, 17(1), 91-95.
  223. Sikorski, E. M., Wilson, J. M., Lowery, R. P., Joy, J. M., Laurent, C. M., Wilson, S. M., ... & Gilchrist, P. (2013). Changes in perceived recovery status scale following high-volume muscle damaging resistance exercise. The Journal of Strength & Conditioning Research, 27(8), 2079-2085.
  224. Kroon, G. W. & Naeije, M. (1991) Recovery of the human biceps electromyogram after heavy eccentric, concentric or isometic exercise. European Journal of Applied Physiology, 63, 444-448
  225. Miranda, H., Maia, M. F., Paz, G. A., de Souza, J. A. A. A., Simão, R., Farias, D. A., & Willardson, J. M. (2018). Repetition performance and blood lactate responses adopting different recovery periods between training sessions in trained men. The Journal of Strength & Conditioning Research, 32(12), 3340-3347.
  226. Soares, S., Ferreira-Junior, J. B., Pereira, M. C., Cleto, V. A., Castanheira, R. P., Cadore, E. L., ... & Bottaro, M. (2015). Dissociated time course of muscle damage recovery between single-and multi-joint exercises in highly resistance-trained men. The Journal of Strength & Conditioning Research, 29(9), 2594-2599
  227. Ferreira, D. V., Ferreira-Júnior, J. B., Soares, S. R., Cadore, E. L., Izquierdo, M., Brown, L. E., & Bottaro, M. (2017). Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance-trained men. The Journal of Strength & Conditioning Research, 31(1), 71-79.
  228. Ferreira, D. V., Gentil, P., Soares, S. R. S., & Bottaro, M. (2017). Recovery of pectoralis major and triceps brachii after bench press exercise. Muscle & Nerve, 56(5), 963-967.
  229. Ferreira, D. V., Gentil, P., Ferreira-Junior, J. B., Soares, S. R., Brown, L. E., & Bottaro, M. (2017). Dissociated time course between peak torque and total work recovery following bench press training in resistance-trained men. Physiology & behavior, 179, 143-147.
  230. Chen, T. C., Huang, G. L., Hsieh, C. C., Tseng, K. W., Tseng, W. C., Chou, T. Y., & Nosaka, K. (2020). Comparison among three different intensities of eccentric contractions of the elbow flexors resulting in the same strength loss at one day post-exercise for changes in indirect muscle damage markers. European journal of applied physiology, 120, 267-279.
  231. Haun, C. T., Mumford, P. W., Roberson, P. A., Romero, M. A., Mobley, C. B., Kephart, W. C., ... & Roberts, M. D. (2017). Molecular, neuromuscular, and recovery responses to light versus heavy resistance exercise in young men. Physiological reports, 5(18), e13457.
  232. Linnamo, V., Pakarinen, A., Komi, P. V., Kraemer, W. J., & Häkkinen, K. (2005). Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. Journal of strength and conditioning research, 19(3), 566.
  233. Amdi, C. H., Cleather, D. J., & Tallent, J. (2021) Impact of training protocols on lifting velocity recovery in resistance trained males and females. Sports, 9, 157. https://doi.org?10.3390/sports9110157
  234. Nosaka, K., Newton, M., & Sacco, P. (2002). Delayed‐onset muscle soreness does not reflect the magnitude of eccentric exercise‐induced muscle damage. Scandinavian Journal of Medicine & Science in Sports, 12(6), 337-346.
  235. Crane, J. S., Thompson, B. J., Harrell, D. C., Bressel, E. and Heath, E. M. (2020) Comparison of high versus low eccentric-based resistance training frequencies on short-term muscle function adaptations. Journal of Strength and Conditioning Research, 36(2), 332-339
  236. Bartolomei, S., Malagoli Lanzoni, I., & Di Michele, R. (2022). Two vs. One Resistance Exercise Sessions in One Day: Acute Effects on Recovery and Performance. Research Quarterly for Exercise and Sport, 1-6.
  237. Ide, B. N., Leme, T. C., Lopes, C. R., Moreira, A., Dechechi, C. J., Sarraipa, M. F., ... & Macedo, D. V. (2011). Time course of strength and power recovery after resistance training with different movement velocities. The Journal of Strength & Conditioning Research, 25(7), 2025-2033.
  238. Thomas, K., Brownstein, C., Dent, J., Parker, P., Goodall, S., & Howatson, G. (2018). Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Medicine & Science in Sports & Exercise, 50(12), 2526-2535.
  239. Macaluso, F., Isaacs, A. W., & Myburgh, K. H. (2012). Preferential type II muscle fiber damage from plyometric exercise. Journal of athletic training, 47(4), 414-420.
  240. Highton, J. M., Twist, C., & Eston, R. G. (2009). The effects of exercise-induced muscle damage on agility and sprint running performance. Journal of Exercise Science & Fitness, 7(1), 24-30.
  241. Chen, T. C., Chen, H. L., Liu, Y. C., & Nosaka, K. (2014). Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. European journal of applied physiology, 114, 1183-1195.
  242. Lavender, A. P., & Nosaka, K. (2006). Responses of old men to repeated bouts of eccentric exercise of the elbow flexors in comparison with young men. European journal of applied physiology, 97, 619-626.
  243. Heckel, Z., Atlasz, T., Tékus, É., Kőszegi, T., Laczkó, J., & Váczi, M. (2019). Monitoring exercise-induced muscle damage indicators and myoelectric activity during two weeks of knee extensor exercise training in young and old men. PLoS One, 14(11), e0224866.
  244. Hortobágyi, T., Houmard, J., Fraser, D., Dudek, R., Lambert, J., & Tracy, J. (1998). Normal forces and myofibrillar disruption after repeated eccentric exercise. Journal of Applied Physiology, 84(2), 492-498.
  245. Coratella, G., Chemello, A., & Schena, F. (2016). Muscle damage and repeated bout effect induced by enhanced eccentric squats. The Journal of Sports Medicine and Physical Fitness, 56(12), 1540-1546.
  246. Saka, T., Akova, B., Yazici, Z., Sekir, U., Gür, H., & Ozarda, Y. (2009). Difference in the magnitude of muscle damage between elbow flexors and knee extensors eccentric exercises. Journal of Sports Science & Medicine, 8(1), 107.
  247. Bamman, M. M., Shipp, J. R., Jiang, J., Gower, B. A., Hunter, G. R., Goodman, A., ... & Urban, R. J. (2001). Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American Journal of Physiology-Endocrinology and Metabolism, 280(3), E383-E390.
  248. Bartolomei, S., Malagoli Lanzoni, I., & Di Michele, R. (2022). Two vs. One Resistance Exercise Sessions in One Day: Acute Effects on Recovery and Performance. Research Quarterly for Exercise and Sport, 1-6.
  249. Chen, T. C., Chen, H. L., Lin, M. J., Wu, C. J., & Nosaka, K. (2009). Muscle damage responses of the elbow flexors to four maximal eccentric exercise bouts performed every 4 weeks. European journal of applied physiology, 106, 267-275.
  250. Hody, S., Rogister, B., Leprince, P., Laglaine, T., & Croisier, J. L. (2013). The susceptibility of the knee extensors to eccentric exercise‐induced muscle damage is not affected by leg dominance but by exercise order. Clinical physiology and functional imaging, 33(5), 373-380.
  251. Fernandes, J. F., Lamb, K. L., & Twist, C. (2019). Exercise-induced muscle damage and recovery in young and middle-aged males with different resistance training experience. Sports, 7(6), 132.
  252. Arroyo, E., Wells, A. J., Gordon III, J. A., Varanoske, A. N., Gepner, Y., Coker, N. A., ... & Hoffman, J. R. (2017). Tumor necrosis factor-alpha and soluble TNF-alpha receptor responses in young vs. middle-aged males following eccentric exercise. Experimental Gerontology, 100, 28-35.
  253. Gordon III, J. A., Hoffman, J. R., Arroyo, E., Varanoske, A. N., Coker, N. A., Gepner, Y., ... & Fukuda, D. H. (2017). Comparisons in the recovery response from resistance exercise between young and middle-aged men. The Journal of Strength & Conditioning Research, 31(12), 3454-3462.
  254. Lavender, A. P., & Nosaka, K. (2008). Changes in markers of muscle damage of middle-aged and young men following eccentric exercise of the elbow flexors. Journal of Science and Medicine in Sport, 11(2), 124-131.
  255. Nikolaidis, M. G. (2017). The effects of resistance exercise on muscle damage, position sense, and blood redox status in young and elderly individuals. Geriatrics, 2(3), 20.
  256. Lavender, A. P., & Nosaka, K. (2006). Responses of old men to repeated bouts of eccentric exercise of the elbow flexors in comparison with young men. European journal of applied physiology, 97, 619-626.
  257. Davies, R. W., Carson, B. P., & Jakeman, P. M. (2018) Sex differences in the temporal recovery of neuromuscular function following resistance training in resistance trained men and women 18 to 35 years. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01480
  258. Lavender, A. P. & Nosaka, K. (2006). Comparison between old and young men for changes in makers of muscle damage following voluntary eccentric exercise of the elbow flexors. Applied Physiology, Nutrition & Metabolism, 31,218-225
  259. Lavender, A. P., & Nosaka, K. (2007). Fluctuations of isometric force after eccentric exercise of the elbow flexors of young, middle-aged, and old men. European journal of applied physiology, 100, 161-167
  260. Häkkinen, K. (1995). Neuromuscular fatigue and recovery in women at different ages during heavy resistance loading. Electromyography and clinical neurophysiology, 35(7), 403-413.
  261. Lewis, M. H., Siedler, M. R., Lamadrid, P., Ford, S., Smith, T., SanFilippo, G., ... & Campbell, B. I. (2022). Sex Differences May Exist for Performance Fatigue but Not Recovery After Single-Joint Upper-Body and Lower-Body Resistance Exercise. The Journal of Strength & Conditioning Research, 36(6), 1498-1505.
  262. Flores, D. F., Gentil, P., Brown, L. E., Pinto, R. S., Carregaro, R. L., & Bottaro, M. (2011). Dissociated time course of recovery between genders after resistance exercise. The Journal of Strength & Conditioning Research, 25(11), 3039-3044.
  263. Sayers, S. P., & Clarkson, P. M. (2001). Force recovery after eccentric exercise in males and females. European journal of applied physiology, 84, 122-126.
  264. Judge, L. W., & Burke, J. R. (2010). The effect of recovery time on strength performance following a high-intensity bench press workout in males and females. International Journal of Sports Physiology & Performance, 5(2).
  265. Hakkinen, K. (1993) Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. International Journal of Sports Medicine, 14(2), 53-59
  266. Ashe, M. C., Gorman, E., Khan, K. M., Brasher, P. M., Cooper, D. M. L., McKay, H. A. and Liu-Ambrose, T. (2013) Does frequency of resistance training affect tibial cortical bone density in older women? A randomized controlled trial. Osteoporosis International, 24, 623-632
  267. Clarkson, P. M., & Dedrick, M. E. (1988). Exercise-induced muscle damage, repair, and adaptation in old and young subjects. Journal of gerontology, 43(4), M91-M96.
    • Periodization
  268. Pacobahyba, N., Vale, R. G. D. S., Souza, S. L. P. D., Simão, R., Santos, E., & Dantas, E. H. M. (2012). Muscle strength, serum basal levels of testosterone and urea in soccer athletes submitted to non-linear periodization program. Revista Brasileira de Medicina do Esporte, 18, 130-133.
  269. Souza, S., Vale, R., Kauffmann, A., Pacobahyba, N., Miranda, H., Lima, R., & Dantas, E. (2010). Effects of non-linear periodisation training on the explosive force and plasma testosterone. Biomedical Human Kinetics, 2(2010), 97-101.
  270. Kraemer, W. J., Hakkinen, K., Triplett-McBride, N. T., Fry, A. C., Koziris, L. P., Ratamess, N. A., ... & Knuttgen, H. G. (2003). Physiological changes with periodized resistance training in women tennis players. Medicine and science in sports and exercise, 35(1), 157-168.
  271. Ghobadi, H., Attarzadeh Hosseini, S. R., Rashidlamir, A., & Mohammad Rahimi, G. R. (2024). Anabolic myokine responses and muscular performance following 8 weeks of autoregulated compared to linear resistance exercise in recreationally active males. Hormones, 1-10.
  272. Herrick, A. B., & Stone, W. J. (1996). The effects of periodization versus progressive resistance exercise on upper and lower body strength in women. The Journal of Strength & Conditioning Research, 10(2), 72-76.
  273. Junior, E. R. T. S., DE SALLES, B. F., Dias, I., Simão, R., & Willardson, J. M. (2022). Effects of Six-week Periodized Versus Non-Periodized Kettlebell Swing Training on Strength, Power and Muscular Endurance. International Journal of Exercise Science, 15(4), 526.
  274. Loturco, I., Nakamura, F. Y., Kobal, R., Gil, S., Pivetti, B., Pereira, L. A., & Roschel, H. (2016). Traditional periodization versus optimum training load applied to soccer players: effects on neuromuscular abilities. International journal of sports medicine, 37(13), 1051-1059.
  275. Abt, J. P., Oliver, J. M., Nagai, T., Sell, T. C., Lovalekar, M. T., Beals, K., ... & Lephart, S. M. (2016). Block-periodized training improves physiological and tactically relevant performance in Naval Special Warfare Operators. The Journal of Strength & Conditioning Research, 30(1), 39-52.
  276. Schiotz, M. K., Potteiger, J. A., Huntsinger, P. G., & Denmark, L. C. D. C. (1998). The short-term effects of periodized and constant-intensity training on body composition, strength, and performance. The Journal of Strength & Conditioning Research, 12(3), 173-178.
  277. Heilbronn, B. E., Doma, K., Gormann, D., Schumann, M., & Sinclair, W. H. (2020). Effects of periodized vs. nonperiodized resistance training on army-specific fitness and skills performance. The Journal of Strength & Conditioning Research, 34(3), 738-753.
  278. Borges Silva, F., Martínez Rodríguez, A., Jiménez Reyes, P., Sánchez Sánchez, J., & Romero Arenas, S. (2023). Which periodization is better (traditional vs undulating) to induce changes in body composition and strength of healthy young adults?. Cultura_Ciencia_Deporte [CCD], 17(54).
  279. Legey, S., Barsanulfo, S. R., Lamego, M., Pinheiro, B., Inacio, P. A., Machado, S., & Sá Filho, A. (2023). Comparison between nonperiodized resistance training and nonlinear periodization on muscular peak power in Brazilian soccer players. Manual Therapy, Posturology & Rehabilitation Journal, 21, 1-5.
  280. Moraes, E., Fleck, S. J., Dias, M. R., & Simão, R. (2013). Effects on strength, power, and flexibility in adolescents of nonperiodized vs. daily nonlinear periodized weight training. The Journal of Strength & Conditioning Research, 27(12), 3310-3321.
  281. Soares, W. F., Soares, V. L., Zanetti, H. R., Neves, F. F., Silva-Vergara, M. L., & Mendes, E. L. (2022). Effects of two different exercise training programs periodization on anthropometric and functional parameters in people living with HIV: a randomized clinical trial. International Journal of Exercise Science, 15(3), 733.
  282. Antretter, M., Färber, S., Immler, L., Perktold, M., Posch, D., Raschner, C., Wachholz, F., & Burtscher, M. (2017) The hatfield-system versus the weekly undulating periodised resistance training in trained males. International Journal of Sports Science & Coaching, 0(0), 1-9. doi: 10.1177/1747954117746457
  283. Antretter, M., Färber, S., Immler, L., Perktold, M., Posch, D., Raschner, C., ... & Burtscher, M. (2019). The Hatfield-System versus the Weekly Undulating Periodised Resistance Training in trained males: Effects of a third mesocyle. Journal of Human Sport and Exercise, 14(3), 599-607
  284. Mann, J. B., Thyfault, J. P., Ivey, P. A., & Sayers, S. P. (2010). The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. The Journal of strength & conditioning research, 24(7), 1718-1723.
  285. Ghobadi, H., Attarzadeh Hosseini, S. R., Rashidlamir, A., & Forbes, S. C. (2022). Auto-regulatory progressive training compared to linear programming on muscular strength, endurance, and body composition in recreationally active males. European Journal of Sport Science, 22(10), 1543-1554.
  286. Bartolomei, S., Hoffman, J. R., Stout, J. R., Zini, M., Stefanelli, C., & Merni, F. (2016). Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. Kinesiology, 48(1.), 71-78.
  287. Mahmoud, N., Mohammadreza, H. A., Abdolhosein, T. K., Mehdi, N., & Arent, S. M. (2022). Serum myokine levels after linear and flexible non-linear periodized resistance training in overweight sedentary women. European journal of sport science, 22(4), 658-668.
  288. Foschini, D., Araújo, R. C., Bacurau, R. F., De Piano, A., De Almeida, S. S., Carnier, J., ... & Dâmaso, A. R. (2010). Treatment of obese adolescents: the influence of periodization models and ACE genotype. Obesity, 18(4), 766-772.
  289. Vanni, A. C., Meyer, F., Da Veiga, A. D. R., & Zanardo, V. P. S. (2010). Comparison of the effects of two resistance training regimens on muscular and bone responses in premenopausal women. Osteoporosis International, 21, 1537-1544.
  290. De Lima, C., Boullosa, D. A., Frollini, A. B., Donatto, F. F., Leite, R. D., Gonelli, P. R. G., ... & Cesar, M. C. (2012). Linear and daily undulating resistance training periodizations have differential beneficial effects in young sedentary women. International journal of sports medicine, 723-727.
  291. Prestes, J., Frollini, A. B., de Lima, C., Donatto, F. F., Foschini, D., de Cássia Marqueti, R., ... & Fleck, S. J. (2009). Comparison between linear and daily undulating periodized resistance training to increase strength. The Journal of Strength & Conditioning Research, 23(9), 2437-2442.
  292. Hassan Tammam, A., & Mohamed Hashem, E. (2015). Comparison between daily and weekly undulating periodized resistance training to increase muscular strength for volleyball players. Journal of Applied Sports Science, 5(3), 27-36.
  293. Bartolomei, S., Hoffman, J. R., Merni, F., & Stout, J. R. (2014). A comparison of traditional and block periodized strength training programs in trained athletes. The Journal of Strength & Conditioning Research, 28(4), 990-997.
  294. Bartolomei, S., Stout, J. R., Fukuda, D. H., Hoffman, J. R., & Merni, F. (2015). Block vs. weekly undulating periodized resistance training programs in women. The Journal of Strength & Conditioning Research, 29(10), 2679-2687.
  295. Hassan Tammam, A., & Mohamed Hashem, E. (2016). The effect of linear and biweekly non-linear periodized resistance training on maximal strength and vertical jump for volleyball players. Journal of Applied Sports Science, 6(1), 73-81.
  296. Jaimes, D. A., Contreras, D., Jimenez, A. M., Orcioli-Silva, D., Barbieri, F. A., & Gobbi, L. T. (2019). Effects of linear and undulating periodization of strength training in the acceleration of skater children. Motriz: Revista de Educação Física, 25.
  297. Apel, J. M., Lacey, R. M., & Kell, R. T. (2011). A comparison of traditional and weekly undulating periodized strength training programs with total volume and intensity equated. The Journal of Strength & Conditioning Research, 25(3), 694-703.
  298. Kok, L. Y., Hamer, P. W., & Bishop, D. J. (2009). Enhancing muscular qualities in untrained women: linear versus undulating periodization. Medicine & Science in Sports & Exercise, 41(9), 1797-1807.
  299. Harries, S. K., Lubans, D. R., & Callister, R. (2016). Comparison of resistance training progression models on maximal strength in sub-elite adolescent rugby union players. Journal of Science and Medicine in Sport, 19(2), 163-169.
  300. Painter, K. B., Haff, G. G., Ramsey, M. W., McBride, J., Triplett, T., Sands, W. A., ... & Stone, M. H. (2012). Strength gains: Block versus daily undulating periodization weight training among track and field athletes. International journal of sports physiology and performance, 7(2), 161-169.
  301. Painter, K. B., Haff, G. G., Triplett, N. T., Stuart, C., Hornsby, G., Ramsey, M. W., ... & Stone, M. H. (2018). Resting hormone alterations and injuries: Block vs. DUP weight-training among D-1 track and field athletes. Sports, 6(1), 3.
  302. Gonelli, P. R., Braz, T. V., Verlengia, R., Pellegrinotti, Í. L., César, M. C., Sindorf, M. A., ... & Lopes, C. R. (2018). Effect of linear and undulating training periodization models on the repeated sprint ability and strength of soccer players. Motriz: Revista de Educação Física, 24.
  303. Peterson, M. D., Dodd, D. J., Alvar, B. A., Rhea, M. R., & Favre, M. (2008). Undulation training for development of hierarchical fitness and improved firefighter job performance. The Journal of Strength & Conditioning Research, 22(5), 1683-1695.
  304. Rana, K. S., & Lehri, A. (2019). A Comparison of Linear and Daily Undulating Periodized Strength Training Programes for Quadriceps Strength in Normal Young Male Population. Journal of Exercise Science & Physiotherapy Vol, 15(1).
  305. Ullrich, B., Pelzer, T., & Pfeiffer, M. (2018). Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. The Journal of Strength & Conditioning Research, 32(3), 660-674.
  306. Doina, S. R. & Florina, G. E. (2019). BLOCK PERIODIZATION IN SPEED SKATING: EFFECT OF 4 WEEKS ON MAXIMUM FORCE AND POWER IN JUNIORS. Studia Universitatis Babeș-Bolyai Educatio Artis Gymnasticae, 77-90.
  307. Sabido, R., Hernández-Davó, J. L., Botella, J., Jiménez-Leiva, A., & Fernández-Fernández, J. (2018). Effects of block and daily undulating periodization on neuromuscular performance in young male handball players. Kinesiology, 50(1), 97-103.
  308. Abdi, N., Hamedinia, M. R., Izanloo, Z., & Hedayatpour, N. (2019). The effect of linear and daily undulating periodized resistance training on the neuromuscular function and the maximal quadriceps strength. Baltic Journal of Health and Physical Activity, 11(1), 5.
  309. Rhea, M. R., Ball, S. D., Phillips, W. T., & Burkett, L. N. (2002). A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. The Journal of strength & conditioning research, 16(2), 250-255.
  310. Miranda, F., Simao, R., Rhea, M., Bunker, D., Prestes, J., Leite, R. D., ... & Novaes, J. (2011). Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains. The Journal of strength & conditioning research, 25(7), 1824-1830.
  311. Rodrigues, B. M., Senna, G. W., Simão, R., Scudese, E., Silva-Grigoletto, M. E. D., Paoli, A., ... & Dantas, E. H. M. (2018). Traditional vs daily undulling periodization in strength and local muscle endurance gains on trained men.
  312. Spineti, J., Figueiredo, T., Salles, B. F. D., Assis, M., Fernandes, L., Novaes, J., & Simão, R. (2013). Comparison between different periodization models on muscular strength and thickness in a muscle group increasing sequence. Revista Brasileira de Medicina do Esporte, 19, 280-286
  313. Ramalingam, S., & Yee, K. (2013). Comparison of linear and daily undulating periodization with equated volume and intensity for muscular endurance in adolescent athletes. Asian Journal of Exercise & Sports Science, 10(2), 36-48.
  314. Simão, R., Spineti, J., de Salles, B. F., Matta, T., Fernandes, L., Fleck, S. J., ... & Strom-Olsen, H. E. (2012). Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. The Journal of strength & conditioning research, 26(5), 1389-1395.
  315. Souza, E. O., Ugrinowitsch, C., Tricoli, V., Roschel, H., Lowery, R. P., Aihara, A. Y., ... & Wilson, J. M. (2014). Early adaptations to six weeks of non-periodized and periodized strength training regimens in recreational males. Journal of sports science & medicine, 13(3), 604.
  316. De Souza, E. O., Tricoli, V., Rauch, J., Alvarez, M. R., Laurentino, G., Aihara, A. Y., ... & Ugrinowitsch, C. (2018). Different patterns in muscular strength and hypertrophy adaptations in untrained individuals undergoing nonperiodized and periodized strength regimens. The journal of strength & conditioning research, 32(5), 1238-1244.
  317. STONE, M. H., Potteiger, J. A., Pierce, K. C., Proulx, C. M., O'bryant, H. S., Johnson, R. L., & Stone, M. E. (2000). Comparison of the effects of three different weight-training programs on the one repetition maximum squat. The Journal of Strength & Conditioning Research, 14(3), 332-337.
  318. Hoffman, J. R., Ratamess, N. A., Klatt, M., Faigenbaum, A. D., Ross, R. E., Tranchina, N. M., ... & Kraemer, W. J. (2009). Comparison between different off-season resistance training programs in Division III American college football players. The Journal of Strength & Conditioning Research, 23(1), 11-19.
  319. Monteiro, A. G., Aoki, M. S., Evangelista, A. L., Alveno, D. A., Monteiro, G. A., da Cruz Piçarro, I., & Ugrinowitsch, C. (2009). Nonlinear periodization maximizes strength gains in split resistance training routines. The Journal of Strength & Conditioning Research, 23(4), 1321-1326.
  320. Buford, T. W., Rossi, S. J., Smith, D. B., & Warren, A. J. (2007). A comparison of periodization models during nine weeks with equated volume and intensity for strength. The Journal of Strength & Conditioning Research, 21(4), 1245-1250.
  321. de Araújo Farias, D., Gonçalves, M. M., Nassar, S. E., & de Oliveira, E. (2021). Effects of Different Periodization Models in Strength Training on Physical and Motor Skills during 24 Weeks of Training: English version of Rev Ed Física/J Phys Ed (2021) 90, 1, 6-23. Revista de Educação Física/Journal of Physical Education, 90(2), 118-133.
  322. Conlon, J., Haff, G., Tufano, J. J., & Newton, R. (2016). Periodization strategies in older adults: impact on physical function and health. Medicine and Science in Sports and Exercise, 48(12), 2426. doi: 10.1249/MSS.0000000000001053
  323. Macedo, R. M. D., Macedo, A. C. B. D., Faria-Neto, J. R., Costantini, C. R., Costantini, C. O., Olandoski, M., ... & Guarita-Souza, L. C. (2018). Superior cardiovascular effect of the periodized model for prescribed exercises as compared to the conventional one in coronary diseases. International Journal of Cardiovascular Sciences, 31, 393-404.
  324. De Freitas, M. C., de Souza Pereira, C. G., Batista, V. C., Rossi, F. E., Ribeiro, A. S., Cyrino, E. S., ... & Gobbo, L. A. (2019). Effects of linear versus nonperiodized resistance training on isometric force and skeletal muscle mass adaptations in sarcopenic older adults. Journal of Exercise Rehabilitation, 15(1), 148.
  325. DeBeliso, M., Harris, C., Spitzer-Gibson, T., & Adams, K. J. (2005). A comparison of periodised and fixed repetition training protocol on strength in older adults. Journal of Science and Medicine in Sport, 8(2), 190-199.
  326. de Souza Bezerra, E., da Rosa Orssatto, L. B., De Moura, B. M., Willardson, J. M., Simão, R., & Moro, A. R. P. (2018). Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. The Journal of Strength & Conditioning Research, 32(10), 2795-2806.
  327. Vargas-Molina, S., García-Sillero, M., Romance, R., Petro, J. L., Jiménez-García, J. D., Bonilla, D. A., ... & Benítez-Porres, J. (2022). Traditional and undulating periodization on body composition, strength levels and physical fitness in older adults. International Journal of Environmental Research and Public Health, 19(8), 4522.
  328. Moura, B. M., Bezerra, E. D. S., Orssatto, L. B., Moro, A. R. P., & Diefenthaeler, F. (2021). Inter-individual rapid force improvements after mixed session and traditional periodization in aging adults: A randomized trial. Journal of Science in Sport and Exercise, 3, 125-137.
  329. Soares, W. F., Soares, V. L., Zanetti, H. R., Neves, F. F., Silva-Vergara, M. L., & Mendes, E. L. (2022). Effects of two different exercise training programs periodization on anthropometric and functional parameters in people living with HIV: a randomized clinical trial. International Journal of Exercise Science, 15(3), 733.
  330. Bertazone, T. M. A., Medeiros, L. H. D. L., Oliveira, C. I. D., Bueno Junior, C. R., & Stabile, A. M. (2022). Periodized combined training in physically active overweight women over 50 years. Motriz: Revista de Educação Física, 28, e10220009721.
  331. da Silva, F. P., Vilaça-Alves, J., de Souza, L. L., dos Santos, J. S., Figueiredo, T., Paz, A. G., ... & Miranda, H. (2016). Effects of daily and flexible non-linear periodization on maximal and submaximal strength, vertical jump and speed performance of Brazilian army skydivers. Int J Sports Exerc Med, 2(4), 1-6.
  332. McNamara, J. M., & Stearne, D. J. (2010). Flexible nonlinear periodization in a beginner college weight training class. The Journal of strength & conditioning research, 24(1), 17-22.
  333. Colquhoun, R. J., Gai, C. M., Walters, J., Brannon, A. R., Kilpatrick, M. W., D'Agostino, D. P., & Campbell, W. I. (2017). Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. The Journal of Strength & Conditioning Research, 31(2), 283-291.
  334. Peixoto, D. L., DE CASTRO, B. M., Macedo, A. G., Urtado, C. B., Lima, P. S., Leite, R. D., ... & Prestes, J. (2022). Muscle Daily Undulating Periodization for Strength and Body Composition: The Proposal of a New Model. International Journal of Exercise Science, 15(4), 206.
  335. Prestes, J., De Lima, C., Frollini, A. B., Donatto, F. F., & Conte, M. (2009). Comparison of linear and reverse linear periodization effects on maximal strength and body composition. The Journal of strength & conditioning research, 23(1), 266-274.
  336. Clemente-Suárez, V. J., Ramos-Campo, D. J., Tornero-Aguilera, J. F., Parraca, J. A., & Batalha, N. (2021). The effect of periodization on training program adherence. International Journal of Environmental Research and Public Health, 18(24), 12973.
  337. Rhea, M. R., Phillips, W. T., Burkett, L. N., Stone, W. J., Ball, S. D., Alvar, B. A., & Thomas, A. B. (2003). A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. The Journal of Strength & Conditioning Research, 17(1), 82-87.
  338. Macedo, R. M. D., Macedo, A. C. B. D., Faria-Neto, J. R., Costantini, C. R., Costantini, C. O., Olandoski, M., ... & Guarita-Souza, L. C. (2018). Superior cardiovascular effect of the periodized model for prescribed exercises as compared to the conventional one in coronary diseases. International Journal of Cardiovascular Sciences, 31, 393-404.
  339. De Freitas, M. C., de Souza Pereira, C. G., Batista, V. C., Rossi, F. E., Ribeiro, A. S., Cyrino, E. S., ... & Gobbo, L. A. (2019). Effects of linear versus nonperiodized resistance training on isometric force and skeletal muscle mass adaptations in sarcopenic older adults. Journal of Exercise Rehabilitation, 15(1), 148.
  340. Moura, B. M., Bezerra, E. D. S., Orssatto, L. B., Moro, A. R. P., & Diefenthaeler, F. (2021). Inter-individual rapid force improvements after mixed session and traditional periodization in aging adults: A randomized trial. Journal of Science in Sport and Exercise, 3, 125-137.
  341. DeBeliso, M., Harris, C., Spitzer-Gibson, T., & Adams, K. J. (2005). A comparison of periodised and fixed repetition training protocol on strength in older adults. Journal of Science and Medicine in Sport, 8(2), 190-199.
  342. de Souza Bezerra, E., da Rosa Orssatto, L. B., De Moura, B. M., Willardson, J. M., Simão, R., & Moro, A. R. P. (2018). Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. The Journal of Strength & Conditioning Research, 32(10), 2795-2806.
  343. Conlon, J. A., Haff, G. G., Tufano, J. J., & Newton, R. U. (2015). Application of session rating of perceived exertion among different models of resistance training in older adults. The Journal of Strength & Conditioning Research, 29(12), 3439-3446.
  344. Conlon, J. A., Haff, G. G., Tufano, J. J., & Newton, R. U. (2018). Training load indices, perceived tolerance, and enjoyment among different models of resistance training in older adults. The Journal of Strength & Conditioning Research, 32(3), 867-875.
  345. Silva, S. D. C. S. D., Pires, F. D. O., Batista Junior, M. T., Serra, L. D. L. P., Reis, C. B. F., Abreu, L. P. D., ... & Leite, R. D. (2023). Linear and undulating resistance training programming induce similar outcomes on physical fitness in elderly women. Revista Brasileira de Cineantropometria & Desempenho Humano, 25, e77528.
  346. Vargas-Molina, S., García-Sillero, M., Romance, R., Petro, J. L., Jiménez-García, J. D., Bonilla, D. A., ... & Benítez-Porres, J. (2022). Traditional and undulating periodization on body composition, strength levels and physical fitness in older adults. International Journal of Environmental Research and Public Health, 19(8), 4522.
  347. Helms, E. R., Byrnes, R. K., Cooke, D. M., Haischer, M. H., Carzoli, J. P., Johnson, T. K., ... & Zourdos, M. C. (2018). RPE vs. percentage 1RM loading in periodized programs matched for sets and repetitions. Frontiers in physiology, 9, 247.
  348. Graham, T., & Cleather, D. J. (2021). Autoregulation by “repetitions in reserve” leads to greater improvements in strength over a 12-week training program than fixed loading. The Journal of Strength & Conditioning Research, 35(9), 2451-2456.
  349. Huang, Z., Ji, H., Chen, L., Zhang, M., He, J., Zhang, W., ... & Li, D. (2023). Comparing autoregulatory progressive resistance exercise and velocity-based resistance training on jump performance in college badminton athletes. PeerJ, 11, e15877.
  350. Huang, Z., Chen, J., Chen, L., Zhang, M., Zhang, W., Sun, J., & Li, D. (2024). The enhancement of explosive power contributes to the development of anaerobic capacity: A comparison of autoregulatory progressive resistance exercise and velocity-based resistance training. Journal of Exercise Science & Fitness.
  351. Vargas-Molina, S., Petro, J. L., Romance, R., Bonilla, D. A., Schoenfeld, B. J., Kreider, R. B., & Benítez-Porres, J. (2022). Menstrual cycle-based undulating periodized program effects on body composition and strength in trained women: A pilot study. Science & Sports, 37(8), 753-761.
  352. Wikstrom-Frisen, L., Boraxbekk, C.-J. and Henriksson-Larsen, K. (2017) Effects on power, strength and lean body mass of menstrual-oral contraceptive cycle based resistance training. The Journal of Sports Medicine and Physical Fitness, 57(1-2), 43-52, doi: 10.23736/S0022-4707.16.05848-5
  353. Ullrich, B., Pelzer, T., Oliveira, S., & Pfeiffer, M. (2016). Neuromuscular responses to short-term resistance training with traditional and daily undulating periodization in adolescent elite judoka. Journal of Strength and Conditioning Research, 30(8), 2083-2099.
  354. Pelzer, T., Ullrich, B., & Pfeiffer, M. (2017). Periodization effects during short-term resistance training with equated exercise variables in females. European journal of applied physiology, 117, 441-454.
  355. Zourdos, M. C., Jo, E., Khamoui, A. V., Lee, S. R., Park, B. S., Ormsbee, M. J., ... & Kim, J. S. (2016). Modified daily undulating periodization model produces greater performance than a traditional configuration in powerlifters. The Journal of Strength & Conditioning Research, 30(3), 784-791.
  356. Oliveira, A. L., Sposito-Araujo, C. A., Senna, G. W., Lopes, T. C., Godoy, E. S., Scudese, E., ... & Dantas, E. H. (2018). Comparison of the Matveev periodization model and the Verkhoshansky periodization model. Journal of Exercise Physiology Online, 21, 60-67.
  357. Franchini, E., Branco, B. M., Agostinho, M. F., Calmet, M., & Candau, R. (2015). Influence of linear and undulating strength periodization on physical fitness, physiological, and performance responses to simulated judo matches. The Journal of Strength & Conditioning Research, 29(2), 358-367.
    • Exercise Order
  358. Assumpcao, C. O., Tibana, R. A., Viana, L. C., Willardson, J. M., & Prestes, J. (2013). Influence of exercise order on upper body maximum and submaximal strength gains in trained men. Clinical physiology and functional imaging, 33(5), 359-363.
  359. Özbay, S., Ulupınar, S., Çınar, V., & Akbulut, T. (2019). The Effect of Exercise Order on Maximum Strength Development in Resistance Trainings. Turkish Journal of Sport and Exercise, 21(2), 300-304.
  360. Dias, I., de Salles, B. F., Novaes, J., Costa, P. B., & Simão, R. (2010). Influence of exercise order on maximum strength in untrained young men. Journal of Science and Medicine in Sport, 13, 65–69. doi: 10.1016/j.jsams.2008.09.003
  361. Simão, R., Spineti, J., de Salles, B. F., Oliveira, L. F., Matta, T., Miranda, F., ... & Costa, P. B. (2010). Influence of exercise order on maximum strength and muscle thickness in untrained men. Journal of sports science & medicine, 9(1), 1.
  362. Spineti, J., De Salles, B. F., Rhea, M. R., Lavigne, D., Matta, T., Miranda, F., ... & Simão, R. (2010). Influence of exercise order on maximum strength and muscle volume in nonlinear periodized resistance training. The Journal of Strength & Conditioning Research, 24(11), 2962-2969.
  363. Tomeleri, C. M., Ribeiro, A. S., Nunes, J. P., Schoenfeld, B. J., Souza, M. F., Schiavoni, D., … Cyrino, E. S. (2019). Influence of resistance-training exercise order on muscle strength, hypertrophy and anabolic hormones in older women: A randomized controlled trial.Journal of Strength and Conditioning Research.
  364. Keskin, K., Gogus, F. N., Gunay, M., & Fujita, R. A. (2024). Equated volume load: similar improvements in muscle strength, endurance, and hypertrophy for traditional, pre-exhaustion, and drop sets in resistance training. Sport Sciences for Health, 1-10.
  365. Fisher, J. P., Carlson, L., Steele, J., & Smith, D. (2014). The effects of pre-exhaustion, exercise order, and rest intervals in a full-body resistance training intervention. Applied Physiology, Nutrition, and Metabolism, 39(11), 1265-1270.
  366. Sforzo, G. A., & Touey, P. R. (1996). Manipulating exercise order affects muscular performance during a resistance exercise training session. The Journal of Strength & Conditioning Research, 10(1), 20-24.
  367. Cardozo, D., de Salles, B. F., Mannarino, P., Vasconcelos, A. P. S., Miranda, H., Willardson, J. M., & Simão, R. (2019). The effect of exercise order in circuit training on muscular strength and functional fitness in older women. International Journal of Exercise Science, 12(4), 657–665.
  368. Brandão, L., de Salles Painelli, V., Lasevicius, T., Silva-Batista, C., Brendon, H., Schoenfeld, B. J., ... & Teixeira, E. L. (2020). Varying the order of combinations of single-and multi-joint exercises differentially affects resistance training adaptations. The Journal of Strength & Conditioning Research, 34(5), 1254-1263.
  369. Japilus, S. J. M., Kassim, A. F., Mansor, S. H., Amir, N. H., Abd Karim, Z., & Nadzalan, A. M. (2020, April). The effects of exercise order during resistance training on muscular strength. In Journal of Physics: Conference Series (Vol. 1529, No. 2, p. 022024). IOP Publishing.
  370. Gentil, P., Soares, S., & Bottaro, M. (2015). Single vs. multi-joint resistance exercises: effects on muscle strength and hypertrophy. Asian journal of sports medicine, 6(2).
  371. Brennecke, A., Guimarães, T. M., Leone, R., Cadarci, M., Mochizuki, L., Simão, R., Amadio, A. C., & Serrão, J. C. (2009). Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. Journal of strength and conditioning research, 23(7), 1933–1940. https://doi.org/10.1519/JSC.0b013e3181b73b8f
  372. Guarascio, M. J., Penn, C., & Sparks, C. (2016). Effects of pre-exhaustion of a secondary synergist on a primary mover in a compound exercise. Journal of Orthopaedic & Sports Physical, 46(1), 178.
  373. Saraiva, A. R., Reis, V. M., Costa, P. B., Bentes, C. M., e Silva, G. V. C., & Novaes, J. S. (2014). Chronic effects of different resistance training exercise orders on flexibility in elite judo athletes. Journal of human kinetics, 40, 129.
  374. Saraiva, A., Pinto, G. S., Costa e Silva, G., Bentes, C., Miranda, H., & Novaes, J. (2014). Influence of exercise order on strength in Judo athletes. Gazzetta Medica Italiana, 173(5), 251–257.
  375. Schumann M, Walker S, Izquierdo M, Newton RU, Kraemer WJ, Häkkinen K. The order effect of combined endurance and strength loadings on force and hormone responses: effects of prolonged training. Eur J Appl Physiol. 2014 Apr;114(4):867-80. doi: 10.1007/s00421-013-2813-6. Epub 2014 Jan 17. PMID: 24435710.
  376. Jones, T. W., Howatson, G., Russell, M., & French, D. N. (2017). Effects of strength and endurance exercise order on endocrine responses to concurrent training. European journal of sport science, 17(3), 326-334.
  377. Davitt, P. M., Pellegrino, J. K., Schanzer, J. R., Tjionas, H., & Arent, S. M. (2014). The effects of a combined resistance training and endurance exercise program in inactive college female subjects: does order matter? The Journal of Strength & Conditioning Research, 28(7), 1937-1945.
  378. Cadore, E. L., Izquierdo, M., Alberton, C. L., Pinto, R. S., Conceição, M., Cunha, G., Radaelli, R., Bottaro, M., Trindade, G. T., & Kruel, L. F. (2012). Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Experimental gerontology, 47(2), 164–169. https://doi.org/10.1016/j.exger.2011.11.013
  379. Shiotsu, Y., Watanabe, Y., Tujii, S., & Yanagita, M. (2018). Effect of exercise order of combined aerobic and resistance training on arterial stiffness in older men. Experimental gerontology, 111, 27-34.
  380. Spreuwenberg, L. P., Kraemer, W. J., Spiering, B. A., Volek, J. S., Hatfield, D. L., Silvestre, R., ... & Fleck, S. J. (2006). Influence of exercise order in a resistance-training exercise session. The Journal of Strength & Conditioning Research, 20(1), 141-144.
    • Chest Exercise Progressions
  381. Trebs, A. A., Brandenburg, J. P., & Pitney, W. A. (2010). An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of a chest press exercise at several angles. The Journal of Strength & Conditioning Research, 24(7), 1925-1930.
  382. Christian, J. R., Gothart, S. E., Graham, H. K., Barganier, K. D., & Whitehead, P. N. (2023). Analysis of the Activation of Upper-Extremity Muscles During Various Chest Press Modalities. The Journal of Strength & Conditioning Research, 37(2), 265-269.
  383. Ferreira, D. V., Ferreira-Júnior, J. B., Soares, S. R., Cadore, E. L., Izquierdo, M., Brown, L. E., & Bottaro, M. (2017). Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance-trained men. The Journal of Strength & Conditioning Research, 31(1), 71-79.
  384. Izquierdo, Lee E., and Martim Bottaro. "CHEST PRESS EXERCISES WITH DIFFERENT STABILITY REQUIREMENTS RESULT IN SIMILAR MUSCLE DAMAGE RECOVERY IN RESISTANCE TRAINED MEN." (2016).
  385. Cacchio, A., Don, R., Ranavolo, A., Guerra, E., McCaw, S. T., Procaccianti, R., ... & Santilli, V. (2008). Effects of 8-week strength training with two models of chest press machines on muscular activity pattern and strength. Journal of Electromyography and Kinesiology, 18(4), 618-627.
  386. Uribe, B. P., Coburn, J. W., Brown, L. E., Judelson, D. A., Khamoui, A. V., & Nguyen, D. (2010). Muscle activation when performing the chest press and shoulder press on a stable bench vs. a Swiss ball. The Journal of Strength & Conditioning Research, 24(4), 1028-1033.
  387. Goodman, C. A., Pearce, A. J., Nicholes, C. J., Gatt, B. M., & Fairweather, I. H. (2008). No difference in 1 RM load strength and muscle activation during the barbell chest press on a stable and unstable surface. The Journal of Strength & Conditioning Research, 22(1), 88-94.
  388. Marshall, P. W., & Murphy, B. A. (2006). Increased deltoid and abdominal muscle activity during stability ball bench press. The Journal of Strength & Conditioning Research, 20(4), 745-750.
  389. Lehman, G. J., Gordon, T., Langley, J., Pemrose, P., & Tregaskis, S. (2005). Replacing a stability ball for an exercise bench causes variable changes in trunk muscle activity during upper limb strength exercises. Dynamic Medicine, 4, 1-7.
  390. Norwood, J. T., Anderson, G. S., Gaetz, M. B., & Twist, P. W. (2007). Electromyographic activity of the trunk stabilizers during stable and unstable bench press. The Journal of Strength & Conditioning Research, 21(2), 343-347.
  391. Saeterbakken, A. H., & Fimland, M. S. (2013). Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. The Journal of Strength & Conditioning Research, 27(4), 1101-1107
  392. Saeterbakken, A. H., Andersen, V., van den Tillaar, R., Joly, F., Stien, N., Pedersen, H., ... & Solstad, T. E. J. (2020). The effects of ten weeks resistance training on sticking region in chest-press exercises. PLoS One, 15(7), e0235555.
  393. Campbell, B. M., Kutz, M. R., Morgan, A. L., Fullenkamp, A. M., & Ballenger, R. (2014). An evaluation of upper-body muscle activation during coupled and uncoupled instability resistance training. The Journal of Strength & Conditioning Research, 28(7), 1833-1838.
  394. Dunnick, D. D., Brown, L. E., Coburn, J. W., Lynn, S. K., & Barillas, S. R. (2015). Bench press upper-body muscle activation between stable and unstable loads. The Journal of Strength & Conditioning Research, 29(12), 3279-3283.
  395. Lawrence, M. A., Leib, D. J., Ostrowski, S. J., & Carlson, L. A. (2017). Nonlinear analysis of an unstable bench press bar path and muscle activation. The Journal of Strength & Conditioning Research, 31(5), 1206-1211.
  396. Ostrowski, S. J., Carlson, L. A., & Lawrence, M. A. (2017). Effect of an unstable load on primary and stabilizing muscles during the bench press. The Journal of Strength & Conditioning Research, 31(2), 430-434.
  397. Lawrence, M. A., Ostrowski, S. J., Leib, D. J., & Carlson, L. A. (2021). Effect of unstable loads on stabilizing muscles and bar motion during the bench press. The Journal of Strength & Conditioning Research, 35, S120-S126.
  398. Harris, S., Ruffin, E., Brewer, W., & Ortiz, A. (2017). Muscle activation patterns during suspension training exercises. International journal of sports physical therapy, 12(1), 42.
  399. Beach, T. A., Howarth, S. J., & Callaghan, J. P. (2008). Muscular contribution to low-back loading and stiffness during standard and suspended push-ups. Human Movement Science, 27(3), 457-472.
  400. Maeo, S., Chou, T., Yamamoto, M., & Kanehisa, H. (2014). Muscular activities during sling-and ground-based push-up exercise. BMC research notes, 7, 1-7.
  401. Borreani, S., Calatayud, J., Colado, J. C., Moya-Nájera, D., Triplett, N. T., & Martin, F. (2015). Muscle activation during push-ups performed under stable and unstable conditions. Journal of Exercise Science & Fitness, 13(2), 94-98.
  402. McGill, S. M., Cannon, J., & Andersen, J. T. (2014). Analysis of pushing exercises: Muscle activity and spine load while contrasting techniques on stable surfaces with a labile suspension strap training system. The Journal of Strength & Conditioning Research, 28(1), 105-116.
  403. Gioftsos, G., Arvanitidis, M., Tsimouris, D., Kanellopoulos, A., Paras, G., Trigkas, P., & Sakellari, V. (2016). EMG activity of the serratus anterior and trapezius muscles during the different phases of the push-up plus exercise on different support surfaces and different hand positions. Journal of Physical Therapy Science, 28(7), 2114-2118.
  404. Seo, S. H., Jeon, I. H., Cho, Y. H., Lee, H. G., Hwang, Y. T., & Jang, J. H. (2013). Surface EMG during the push-up plus exercise on a stable support or Swiss ball: scapular stabilizer muscle exercise. Journal of physical therapy science, 25(7), 833-837.
  405. Lehman, G. J., MacMillan, B., MacIntyre, I., Chivers, M., & Fluter, M. (2006). Shoulder muscle EMG activity during push up variations on and off a Swiss ball. Dynamic Medicine, 5, 1-7.
  406. Lehman, G. J., Gilas, D., & Patel, U. (2008). An unstable support surface does not increase scapulothoracic stabilizing muscle activity during push up and push up plus exercises. Manual therapy, 13(6), 500-506.
  407. Park, S. Y., & Yoo, W. G. (2011). Differential activation of parts of the serratus anterior muscle during push-up variations on stable and unstable bases of support. Journal of Electromyography and Kinesiology, 21(5), 861-867.
    • Back Progressions
  408. García-Jaén, M., Sanchis-Soler, G., Carrión-Adán, A., & Cortell-Tormo, J. M. (2021). Electromyographical responses of the lumbar, dorsal and shoulder musculature during the bent-over row exercise: a comparison between standing and bench postures (a preliminary study).
  409. Youdas, J. W., Kleis, M., Krueger, E. T., Thompson, S., Walker, W. A., & Hollman, J. H. (2021). Recruitment of shoulder complex and torso stabilizer muscles with rowing exercises using a suspension strap training system. Sports Health, 13(1), 85-90.
  410. Fenwick, C. M., Brown, S. H., & McGill, S. M. (2009). Comparison of different rowing exercises: trunk muscle activation and lumbar spine motion, load, and stiffness. The Journal of Strength & Conditioning Research, 23(5), 1408-1417.
  411. de Abreu Vasconcelos, C. M. W., Lopes, C. R., Almeida, V. M., Neto, W. K., & Soares, E. (2023). Effect Of Different Grip Position And Shoulder-Abduction Angle On Muscle Strength And Activation During The Seated Cable Row. International Journal of Strength and Conditioning, 3(1).
  412. Youdas, J. W., Hubble, J. W., Johnson, P. G., McCarthy, M. M., Saenz, M. M., & Hollman, J. H. (2020). Scapular muscle balance and spinal stabilizer recruitment during an inverted row. Physiotherapy theory and practice, 36(3), 432-443.Harris, S., Ruffin, E., Brewer, W. and Ortiz, A. (2017) Muscle activation patterns during suspension training exercises. International Journal of Sports Physical Therapy, 12(1), 42-52.
  413. Snarr, R. L., & Esco, M. R. (2013). Comparison of electromyographic activity when performing an inverted row with and without a suspension device. Age (yrs), 26(4.2), 22-3.
  414. Snarr, R., Nickerson, B., & Esco, M. (2014). Effects of hand-grip during the inverted row with and without a suspension device: An electromyographical investigation. Euro J Sports Exerc Sci, 3, 1-5.
  415. McGill, S. M., Cannon, J., & Andersen, J. T. (2014). Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching. Journal of Electromyography and Kinesiology, 24(5), 652-665.
  416. Lehman, G. J., Buchan, D. D., Lundy, A., Myers, N., & Nalborczyk, A. (2004). Variations in muscle activation levels during traditional latissimus dorsi weight training exercises: An experimental study. Dynamic Medicine, 3, 1-5.
  417. Doma, K., Deakin, G. B., & Ness, K. F. (2013). Kinematic and electromyographic comparisons between chin-ups and lat-pull down exercises. Sports biomechanics12(3), 302–313. https://doi.org/10.1080/14763141.2012.760204
  418. Park, S. Y., & Yoo, W. G. (2013). Selective activation of the latissimus dorsi and the inferior fibers of trapezius at various shoulder angles during isometric pull-down exertion. Journal of Electromyography and Kinesiology, 23(6), 1350-1355.
  419. Signorile, J. E., Zink, A. J., & Szwed, S. P. (2002). A comparative electromyographical investigation of muscle utilization patterns using various hand positions during the lat pull-down. The Journal of Strength & Conditioning Research, 16(4), 539-546.
  420. Padovan, R., Toninelli, N., Longo, S., Tornatore, G., Esposito, F., Cè, E., & Coratella, G. (2024). High-density electromyography excitation in front vs. back lat pull-down prime movers. Journal of Human Kinetics, 91(Spec Issue), 47.
  421. Sperandei, S., Barros, M. A., Silveira-Júnior, P. C., & Oliveira, C. G. (2009). Electromyographic analysis of three different types of lat pull-down. The Journal of Strength & Conditioning Research, 23(7), 2033-2038.
  422. Lusk, S. J., Hale, B. D., & Russell, D. M. (2010). Grip width and forearm orientation effects on muscle activity during the lat pull-down. The Journal of Strength & Conditioning Research, 24(7), 1895-1900.
  423. Andersen, V., Fimland, M. S., Wiik, E., Skoglund, A., & Saeterbakken, A. H. (2014). Effects of grip width on muscle strength and activation in the lat pull-down. The Journal of Strength & Conditioning Research, 28(4), 1135-1142.
  424. Raizada, S., & Bagchi, A. (2019). A comparative electromyographical investigation of Latissimus dorsi and Biceps brachii using Various hand positions in pull ups. Indian J Public Health, 10, 1625.
  425. Snarr, R. L., Hallmark, A. V., Casey, J. C., & Esco, M. R. (2017). Electromyographical comparison of a traditional, suspension device, and towel pull-up. Journal of Human Kinetics, 58, 5.
  426. Williamson, T., & Price, P. D. (2021). A comparison of muscle activity between strict, kipping and butterfly pull-ups. The Journal of Sport and Exercise Science, 5(2), 149-155.Cueing and Coaching (and 11)
  427. Snyder, B. J., & Leech, J. R. (2009). Voluntary increase in latissimus dorsi muscle activity during the lat pull-down following expert instruction. The Journal of Strength & Conditioning Research, 23(8), 2204-2209
    • Shoulder Exercise Progressions
  428. Saeterbakken, A. H., & Fimland, M. S. (2013). Effects of body position and loading modality on muscle activity and strength in shoulder presses. The Journal of Strength & Conditioning Research, 27(7), 1824-1831.
  429. Lehman, G. J., Gordon, T., Langley, J., Pemrose, P. and Tregaskis, S. (2005) Replacing a Swiss ball for an exercise bench causes variable changes in trunk muscle activity during limb strength exercises. Dynamic Medicine, 4(6), doi: 10.1186/1476-5918-4-6
  430. Kohler, J. M., Flanagan, S. P., & Whiting, W. C. (2010). Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. The Journal of Strength & Conditioning Research, 24(2), 313-321.
  431. Behm, D. G., Leonard, A. M., Young, W. B., Bonsey, W. A. C., & MacKinnon, S. N. (2005). Trunk muscle electromyographic activity with unstable and unilateral exercises. The Journal of Strength & Conditioning Research, 19(1), 193-201.
  432. Williams Jr, M. R., Hendricks, D. S., Dannen, M. J., Arnold, A. M., & Lawrence, M. A. (2020). Activity of shoulder stabilizers and prime movers during an unstable overhead press. The Journal of Strength & Conditioning Research, 34(1), 73-78.
  433. Baritello, O., Khajooei, M., Engel, T., Kopinski, S., Quarmby, A., Mueller, S., & Mayer, F. (2020). Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass. BMC Sports Science, Medicine and Rehabilitation, 12, 1-14.
  434. Sweeney, S. P. (2014). Electromyographic analysis of the deltoid muscle during various shoulder exercises (Doctoral dissertation).
  435. Keogh, J. W., Aickin, S. E., & Oldham, A. R. (2010). Can common measures of core stability distinguish performance in a shoulder pressing task under stable and unstable conditions?. The Journal of Strength & Conditioning Research, 24(2), 422-429.
    • Leg Exercise Progressions
  436. Park, J. K., Lee, D. Y., Kim, J. S., Hong, J. H., You, J. H. and Park, I. M. (2015) Effects of visibility and types of the ground surface on the muscle activities of the vastus medialis oblique and vastus lateralis. Journal of Physical Therapy Sciences, 27, 2435-2437
  437. Han, D., Nam, S., Song, J., Lee, W. and Kang, T. (2017) The effect of knee flexion angles and ground conditions on the muscle activation of the lower extremity in the squat position. The Journal of Physical Therapy Science, 29, 1852-1855.
  438. Li, Y., Cao, C. and Chen, X. (2013) Similar electromyographic activities of lower limbs between squatting on a reebok core board and ground. Journal of Strength and Conditioning Research, 27(5), 1349-1353
  439. Andersen, V., Fimland, M. S., Brennset, O., Haslestad, L. R., Lundteigen, M. S., Skalleberg, K. and Saeterbakken, A. H. (2014) Muscle activation and strength in squat and Bulgarian squat on stable and unstable surface. Sports Medicine, 35, 1196-1202
  440. Saeterbakken, A. H. and Fimland, M. S. (2013) Muscle force output and electromyographic activity in squats with various unstable surfaces. The Journal of Strength and Conditioning Research, 27(1), 130-136
  441. Lawrence, M. A. and Carlson, L. A. (2015) Effects of an unstable load on force and muscle activation during a parallel back squat. Journal of Strength and Conditioning, 29(10), 2949-2953
  442. Ditroilo, M., O'Sullivan, R., Harnan, B., Crossey, A., Gillmor, B., Dardis, W. and Grainger, A. (2018) Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat. Journal of Sports Sciences, 36(17), 2002-2008
  443. Stuart, M. J., Meglan, D. A., Lutz, G. E., Growney, E. S. and An, K. N. (1996) Comparison of intersegmental tibiofemoral joint forces and muscle acdtivity during various closed kinetic chain exercises. The American Journal of Sports Medicine, 24(6), 792-799
  444. DeForest, B. A., Cantrell, G. S. and Schilling, B. K. (2014) Muscle activity in single- vs. double-leg squats. International Journal of Exercise Science, 7(4), 302-310
  445. Jones, M. T., Ambegaonkar, J. P., Nindl, B. C., Smith, J. A. and Headley, S. A. (2012) Effects of unilateral and bilateral lower-body heavy resistance exercise on muscle activity and testosterone responses. The Journal of Strength and Conditioning Research, 26(4), 1094-1100
  446. McCurdy, K., O'Kelley, E., Kutz, M., Langford, G., Ernest, J. and Torres, M. (2010) Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. Journal of Sport Rehabilitation, 19, 57-70
  447. McCurdy, K., Walker, J. and Yuen, D. Gluteus maximus and hamstring activation during selected weight-bearing resistance exercises. Journal of Strength and Conditioning Research,
  448. Lubahn, A. J., Kernozek, T. W., Tyson, T. L., Merkitch, K. W., Reutemann, P. and Chestnut, J. M. (2011) Hip muscle activation and knee frontal plane motion during weight bearing therapeutic exercises. The International Journal of Sports Physical Therapy, 6(2), 92-103
  449. Eliassen, W., Saeterbakken, A. H. and van den Tillaar, R. (2018) Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. The International Journal of Sports Physical Therapy, 13(5), 871-881
  450. Krause, D. A., Elliott, J. J., Fraboni, D. F., McWilliams, T. J., Rebhan, R. L. and Hollman, J. H. (2018) Electromyography of the hip and thigh muscles during two variations of the lunge exercise: a cross-sectional study. The International Journal of Sports Physical Therapy, 13(2), 137-14
  451. Krause, D. A., Jacobs, R. S., Pilger, K. E., Sather, B. R., Sibunka, S. P. and Hollman, J. H. (2009) Electromyographic analysis of the gluteus medius in five weight-bearing exercises. Journal of Strength and Conditioning Research, 23(9), 2689-2694.
  452. DiStefano, L. J., Blackburn, J. T., Marshall, S. W. and Padua, D. A. (2009) Gluteal muscle activation during common therapeutic exercises. Journal of Orthopaedic and Sports Physical Therapy, 39(7), 532-540
  453. Boren, K., Conrey, C., Le Coguic, J., Paprocki, L., Voight, M. and Robinson, T. K. (2011) Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. The International Journal of Sports Physical Therapy, 6(3), 206-223
  454. Begalle, R. L., DiStefano, L. J., Blackburn, T. and Padua, D. A. (2012) Quadriceps and hamstrings coactivation during common therapeutic exercises. Journal of Athletic Training, 47(4), 396-405

© 2026 Brookbush Institute. All rights reserved.

Comments

Guest